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Excited State Dynamics of 2-MPT-Derived
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Abstract— Excited state dynamics from molecular fluores-
cent switches of the donor- or acceptor-derived 5-Methoxy-2-
(2-pyridyl)thiazole (2-MPT) fluorescent molecules has been stud-
ied by ultrafast spectroscopy. The twisted intramolecular charge
transfer (TICT) excited state is found to be created within 1 ps.
Then the relaxation of TICT excited state causes further twist
of the molecular conformation (especially the moiety 2-MPT)
and reduces the transition moment. It takes about 600-700 ps to
reach a state with ten nanoseconds of lifetime. This final state is
nearly a dark state, which is attributed as the main reason for the
drastic decrease of the fluorescence quantum field with respect to
the moiety 2-MPT. For MPTEA with a strong electron donor in
high polarity solvents, TICT’s excited state partially transfers to a
planar intramolecular charge transfer (PICT) excited state within
10 ps due to the strong dipole-dipole interaction with solvent
molecules. PICT’s excited state gives a relatively strong emission
with a large red shift. The results demonstrate that the excited
state dynamics of these molecular fluorescent switches provides
deep insight to their photophysical processes, which is important
for exploring novel molecular switches as potential candidates
for optical biolabels, sensors and logic gates applications.

Index Terms— Excited state dynamics, femtosecond laser,
intramolecular charge transfer, molecular switch.

I. INTRODUCTION

THE novel molecular switches have been paid much atten-
tion since they can be widely used as optical biolabels,

sensors, and logic gates [1]–[11]. Especially, for the molec-
ular fluorescence switch as an optical probe, the changes in
either fluorescence intensity or emission position provide zero-
background output signal in sensing applications [12], [13].
New molecular fluorescence switches are commonly achieved
by deriving the fluorophore with special binding sites, which
can bind to specific targets. As a consequence, the binding
site will cause the interaction with the fluorophore both in
ground and excited states. For example, the electron-rich
metal binding sites may donate electrons to the originally
fluorophore- centered frontier orbits at the excited states. The
charge transfer processes between the fluorophore and the
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reception site produce new fluorescence switching features,
and this behavior is also strongly influenced by the sur-
round environment [14], [15]. Therefore, understanding the
derivation-fluorescence correlation is very important for appli-
cations using a fluorophore in optical sensing. On the other
hand, the relation between molecular conformation change in
excited state and its photophysical property is a long stand-
ing topic. For example, the characteristics of intramolecular
charge transfer (ICT) has been extensively studied in the past
30 years [16]–[24], and twisted intramolecular charge transfer
(TICT) model [25]–[27], planar intramolecular charge transfer
(PICT) model [28], [29], and models such as �E(S1, S2)
playing a crucial role in determining the occurrence of ICT
state [30] have been suggested.

5-Methoxy-2-(2-pyridyl)thiazole (2-MPT), a newly devel-
oped blue-emissive fluorophore, exhibits high quantum yield
in both water and organic solvents [31]. Its derivatives with
fluorescence switch behavior can act as various binary logic
gates and have an application potential in molecular sensors
[32]–[34]. Further application requires detailed understanding
on the perturbation of original MPT-centered charge transfer
by the reception site. Recently, Sun et al [35] reported the
steady-state photophysical properties of donor- or acceptor-
derived 2-MPT fluorescent switches, in which the fluorophore
and the aromatic substituent are covalently linked to a triple
bond [35]. The substitution groups are systematically var-
ied from the strong electron donors to weak donors. Both
the steady-state spectral and theoretical investigations have
revealed the roles of the substituents in the electronic tran-
sitions in 2-MPT derivatives. The conformation relaxation
of excited state to either a twisted or a coplanar structure
depends on the substituents and also interaction with the
solvent molecule, so the final emission state can be either TICT
or PICT state. However, the excited state dynamics and detail
relaxation path are still unclear. Furthermore, 2-MPT-derived
molecular fluorescent switch also is a very good molecular
system to understand the photophysical property of ICT, TICT
and PICT states. Femtosecond laser technique as an important
optical tool has been widely used in studying various nonlinear
optical phenomenon [36]–[38] and also is an ideal tool for
investigating the above photophysical processes.

In order to further give a full picture of the excited state
processes for 2-MPT-derived molecular fluorescent switches,
we studied the excited state dynamics for 2-MPT derived
fluorescent molecules with weak and strong electronic donor
both in toluene and acetonitrile based on the femtosecond

0018−9197/$26.00 © 2011 IEEE
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Fig. 1. Structures of MPTE and MPTEA.

fluorescence up-conversion and transient absorption tech-
niques.

II. EXPERIMENTS

The procedure for the preparation of the MPTE and MPTEA
compounds was as described in Ref. [35] structures shown
in Fig. 1. The solvents toluene and acetonitrile, are of spec-
trophotometric grade (Aldrich). Samples with a concentration
of 10−4 M were used for the measurements.

Femtosecond fluorescence upconversion kinetics were mea-
sured by means of the set-up described previously [39]. The
pump (at 350 nm) is generated by the laser system (Spectra-
Physics, 800 nm pulse, 150 fs pulse duration, and OPA-
800 C). The system response time as measured from the
cross-correlation signal of the excitation and gating pulses
at 350 nm and 800 nm, was estimated to be approximately
450 fs (FWHM). In the femtosecond transient absorption
experiments [40], the same laser system was used, while the
probe is a white light continuum pulse generated by focusing
the 800 nm beam into a sapphire plate. Time resolved tran-
sient absorption spectra were detected with a highly sensitive
spectrometer (Avantes AvaSpec-2048×14). The group velocity
dispersion of the whole experimental system was compensated
by a chirp program. To remove contributions from rotational
reorientation motions of the solute molecules, measurements
were performed under magic angle conditions (with the laser-
excitation polarization at an angle of 54.7° relative to the
vertically polarized gating beam or white light continuum).

Steady state absorption spectra were measured by a Shi-
madzu UV-1700 spectrophotometer, and emission spectra
were recorded with a Shimadzu RF-5301PC spectrometer. All
experiments were performed at room temperature.

III. RESULTS AND DISCUSSIONS

A. Steady-State Absorption

Figure 2 shows the steady-state absorption and fluorescence
spectra of MPTE and MPTEA in toluene and acetonitrile
solvents. For MPTE, the absorption peaks locate at 337 and
334 nm corresponding to the S0 → S1 electronic transi-
tion in toluene and acetonitrile, respectively. The emission
peaks emerge at 405 and 410 nm in toluene and acetonitrile,
respectively, and the fluorescence band only show slightly red-
shifted with the increase in solvent polarity. As for MPTEA,
absorption peaks are around 356 nm for both in toluene and
acetonitrile. However, comparing with MPTE, the fluorescence
emission strongly depends on the solvent polarity. The emis-
sion peak is red-shifted from 444 nm in toluene to 520 nm
in acetonitrile with significant broadening of the emission
band, which indicates that MPTEA with a strong electronic
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Fig. 2. Steady-state spectra. (a) MPTE in toluene and acetonitrile.
(b) MPTEA in toluene and acetonitrile

donating substituent tends to produce a larger excited state
dipole moment and results in the stronger interaction with the
solvent molecules, thus causes the significant red-shifted of
emission band.

Theoretical calculations indicate that intramolecular charge
transfer (ICT) state exists for both MPTE and MPTEA with
twisted excited state conformations [35], of which the flu-
orescent switching functions applied in digital logic circuits
also have been described in elsewhere publications [32]–[34].
The electronic transition from the local excited (LE) state to
the twisted ICT (TICT) excited state occurs very fast, so the
emission mainly comes from the TICT state. But for MPTEA,
its aromatic ring with amino group can rotate around the triple
bond axis after excitation. So if there is enough energy to
activate the rotation freedom, a planar configuration that the
substitute and MPT moiety keep good planarity in the excited
state called the planar ICT (PICT) state may be produced,
which leads to the excited state configurationally change from
the TICT to the PICT state and results in the fluorescence
lifetime of PICT state longer than that of TICT excited
state. For MPTEA in low polarity solvents such as toluene,
the emission originates from the TICT state, while in high
polarity solvents such as acetonitrile there is an excited state
configurational change from the TICT to PICT excited state
resulting in the broadening and red-shifted of the emission
band, thus the fluorescence band for MPTEA in acetonitrile is
the superposition of the TICT and PICT fluorescence.

In order to further verify the above results from the exper-
imental aspects and also give a full picture of the processes,
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Fig. 3. Time-resolved transient absorption spectra for MPTE in toluene and
acetonitrile, respectively. (a) and (b) MPTE in toluene. (c) and (d) MPTE in
acetonitrile.

we studied the relaxation processes of excited states for
MPTE and MPTEA both in toluene and acetonitrile based
on the femtosecond fluorescence up-conversion and transient
absorption techniques.

B. Time-Resolved Transient Absorption

Fig. 3(a) shows the transient absorption spectra for MPTE
in toluene during the first picosecond. One can clearly see
that the excited state absorption (at 524 nm) is not instan-
taneously formed after the excitation, which the formation
time is about 300 fs. Then the absorption spectrum decays
gradually accompanied by a peak shift during the relaxation
process (Fig. 3(b)). The absorption peak shifts from 524 nm
at 0.9 ps to 532 nm at 650 ps. After then, the spectrum
keeps the shape and no longer decay. The normalized transient
absorption dynamics at 524 nm exhibits a constant component
in nanosecond time scale with amplitude about 25%. The time
resolved transient absorption spectra of MPTE in acetonitrile
are shown in Fig. 3(c) and Fig. 3(d). It is quite similar to that
in toluene. The excited state absorption (at 516 nm) is formed
with a time constant about 300 fs. And then, the excited state
absorption band shift from 516 to 527 nm during the decay.
After 700 ps, the spectrum is nearly no change and decay,
which the amplitude of this constant component is about 25%.

For MPTEA in toluene, the excited state absorption (at
540 nm) is formed with a time constant about 250 fs, and
spectra show a significant blue shift during the formation,
which the peak shifts from 560 nm at 0.1 ps to 540 nm at
0.7 ps (Fig. 4(a)). And then, the absorption spectrum gradually
decays also accompanied by a peak shift to 552 nm at 600 ps
(Fig. 4(b)). After that, the spectrum show no longer change
and decay.
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Fig. 4. Time-resolved transient absorption spectra for MPTEA in toluene
and acetonitrile, respectively. (a) and (b) MPTEA in toluene. (c)–(f) MPTEA
in acetonitrile, where (f) represents the normalized time-resolved transient
absorption spectra.

For MPTEA in acetonitrile the formation of the transient
absorption signal is similar with that in toluene. There is
also a clear blue shift of the absorption spectrum (Fig. 4(c)),
and the absorption peak shifts from 560 nm at 0.1 ps to
530 nm at 0.7 ps. However, different from the above three
cases, the excited state absorption band at 530 nm shows
a fast decay process during the first 10 ps, while a new
transient absorption band range from 430 to 510 nm is formed
(Fig. 4(e)). The normalized time-resolved absorption spectra
show more clearly that the absorption band becomes broader
towards the shorter wavelengths during the period of 0.7 ps to
10 ps, and the formation of a new excited state absorption band
(Fig. 4(f)). The transient signal is the combination of these
two excited state absorption bands. For the band at 530 nm,
its relaxation is quiet similar to those in the above three cases.
The absorption spectrum gradually decays also accompanied
by a peak shift to 540 nm at 700 ps (Fig. 4(d)), and then
keep constant. However, the new blue band shows rather slow
decay trend that the time constant is about 1.2 ns.

C. Time-Resolved Fluorescence Emission

Finally, the fluorescence upconversion experimental
results complementary to those from femtosecond transient
absorption experiments have been obtained. Figure 5 shows
the normalized fluorescence dynamics for MPTE and MPTEA
in toluene and acetonitrile, respectively. All the fluorescence
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Fig. 5. Fluorescence and transient absorption transients for MPTE and
MPTEA in toluene and acetonitrile, respectively. (a) MPTE in toluene.
(b) MPTE in acetonitrile. (c) MPTEA in toluene. (d) MPTEA in acetonitrile.

transients were fitted to multi-exponential functions and were
convoluted with the system response function and the best-fit
parameters of fluorescence transients are list in Table I.

As for MPTE in toluene and acetonitrile and also for
MPTEA in toluene, the fluorescence transients show nearly
the same kinetics at different detected wavelength (Fig. 5).
The fitting results give two lifetimes, one is around tens
picoseconds and another longer one is range from 220 ps
to 350 ps (Table 1). We should note that the fluorescence
transients perfectly match the excited state absorption kinetics,
if we neglect none decay component in the transient absorption
experiments (Fig. 5). However, for MPTEA in acetonitrile, the
fluorescence dynamics show a very strong wavelength depen-
dent behavior (Fig. 5(d)). As the wavelength increasing, the
fluorescence dynamics decays slower gradually. Comparing
with the above three cases, the fluorescence transients have
a considerable fast decay component that is dominant in blue
side (450 nm to 520 nm). The longest lifetime is about 1.2 ns,
and the amplitude increases as detected wavelength becomes
longer. At the far blue side 450 nm, the 1.2 ns component is
absent; the longest lifetime is 220 ps (Table 1).

Actually, time-correlated single photon counting (TCSPC)
measurements for MPTE and MPTEA in both solvents show
that the emission have a small proportion of long-lived fluores-
cent component (less than 1%) with tens nanoseconds lifetime
(data not shown), which is so weak that is hardly seen in the
femtosecond fluorescence up-conversion measurements.

D. Excited State Dynamics of MPTE

For MPTE both in toluene and acetonitrile, the excited state
absorption and also fluorescence show a single band behav-
ior with essential same dynamics, which indicates that, the
relaxation process comes from one electronic state. However,
from the transient absorption experimental results, this state is
not instantaneously formed after the excitation, which implies
the state transition process. At the early time (the first one
picosecond), this transition is corresponding to intramolecular
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Fig. 6. Normalized transient absorption dynamics in early timescales for
MPTEA probed. (a) Toluene. (b) Acetonitrile. The dynamics shows the LE
to TICT state transition. (c) Normalized transient absorption dynamics for
MPTEA probed at 430 nm and 530 nm in acetonitrile to represent TICT to
PICT state transformation.

charge transfer process as expected by theoretical calculation.
The transition from the LE state to the TICT state leads to
the charge redistribution in the molecules. Then the molecular
nuclear conformation will change to stabilize the TICT state,
which occurs relatively slower than the electronic transition.
From the time-resolved transient absorption spectra, one can
see the stabilization of the TICT state is accompanied by the
red shift of the excited state absorption band until 600 ps–
700 ps, with a evolution lifetime of 200–300 ps. After the
relaxation, it is interesting that the excited state population
does not completely return back to ground state. The excited
state absorption of TICT state shows no decay trend in
nanosecond time scale; this implies that the TICT excited state
relaxes to a rather stable final state with very long lifetime.

The time-resolved fluorescence experimental results show
that this final state gives extremely weak emission, which is
a nearly dark state. So, the TICT conformational relaxation
process is associated with the decrease of the electronic
transition probability and finally forms a twisted dark excited
state. Because of the forbidden electronic transition in the dark
state, the electrons will stay in the excited state for a very
long time, and TCSPC fluorescence dynamics show that the
dark state has a lifetime about tens nanoseconds. This kind
of dark state is also found in other molecules with twisted
excited state, such as auramine [41] and poly(spirofluorene-
co-benzothiadiazole) [42]. The relaxation of TICT state causes
the further twist of the molecular conformation (especially the
moiety 2-MPT) and reduces the transition moment. We believe
that the presence of the dark state in 2-MPT derived fluorescent
molecules is the main reason for the drastically decrease
of the fluorescence quantum field relative to the moiety
2-MPT.

E. Excited State Dynamics of MPTEA

Comparing with MPTE, MPTEA has a much strong electron
donor (amino groups), this will results that the intramolecular



JIANG et al.: EXCITED STATE DYNAMICS OF 2-MPT-DERIVED FLUORESCENT MOLECULAR SWITCHES 1167

TABLE I

FLUORESCENT LIFETIMES OF MPTE AND MPTEA

Solute Solvent Wavelength (nm) τ1 (ps) τ2 (ps) τ3 (ps) τ4 (ps)

MPTE
Tol 475 26 (45.9%) 276 (54.1%)

AN 475 22 (42.7%) 415 (57.3%)

MPTEA

Tol 475 70 (51.1%) 211 (48.9%)

AN

450 1.0 (68.0%) 21 (21.0%) 220 (11.0%)

520 1.2 (62.0%) 31 (15.0%) 220 (6.0%) 1200 (17.0%)

600 2.1 (22.0%) 35 (31.0%) 220 (7.0%) 1200 (39.0%)

650 4.0 (10.0%) 53 (36.0%) 1200 (54.0%)

Best-fit parameters of femtosecond fluorescence up-conversion dynamics of MPTE and MPTEA in
toluene and acetonitrile with function I∞ ∑

i Ai exp(−t/τi )

charge transfer state has a large dipole moment and strong
dipole-dipole interaction with solvent molecule. So, the rota-
tion freedoms of aromatic ring with amino group around the
triple bond axis can be activated if there is enough energy due
to the strong interaction. As a result, a planar configuration
that the substitute and MPT moiety keep good planarity in the
excited state PICT may be produced.

For MPTEA in toluene, the transient absorption result also
shows the transition from the LE state to the TICT state at
the first picosecond. The spectra show a significant blue shift
during the transition, which may reflect the strong charge
transfer character of MPTEA molecule. And then, its behavior
is quiet similar to that of MPTE, the relaxation of the TICT
state takes about 600 ps, finally reach to dark state with
tens nanoseconds lifetime. The time-resolved fluorescence
experiments also give consistent results. So, in toluene, there is
not enough energy to activate the rotational freedom because
toluene molecule is not very polar.

For MPTEA in acetonitrile, at the first picosecond, the
transition from the LE state to the TICT state is also observed,
while the spectra show a significant blue shift as that in
toluene. After that, the excited state dynamics exhibits very
different behavior. The fluorescence dynamics is strongly
dependent of the detected wavelength. The fitting results
indicate that the emission comes from two states, which the
lifetimes are 220 ps and 1.2 ns, respectively. At far blue or red
side of emission band, the fluorescence only show one long
lifetime (Table I). One state with lifetime 220 ps obviously is
the TICT state just like the above three cases. As mentioned
above, a planar excited state configuration may be produced
because of the rotation of the aromatic ring around the triple
bond axis after excitation and generates the PICT state. The
formation of PICT excited state needs to overcome the energy
barrier for the substitute rotating around the triple bond axis.
For MPTEA in low polarity solvents such as toluene, the
dipole-dipole interaction between the molecule and solvent is
not strong enough to overcome the barrier, thus the emission is
only from the TICT state. While for MPTEA in high polarity
solvents such as acetonitrile, the stronger interaction lows
down the energy level of PICT state, and the small barrier
makes the PICT state possible. So, another new state with
longer lifetime 1.2 ns can be assigned to PICT state with
rather strong emission at red side. Therefore, the emission
band for MPTEA in acetonitrile is the superposition of the
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Fig. 7. Schematic representation of excited state dynamic pathways for
5-Methoxy-2-(2-pyridyl)thiazole-derived fluorescent molecules. (a) Less polar
solvents. (b) and (c) MPTEA in high polar solvent.

emission from both the TICT and PICT excited states. We
can not resolve the clear formation process of TICT from the
fluorescence dynamics because of the mixture of two emission
bands. However, comparing with the above three cases, the
extraordinary fast decay process that the time constants range
from 1 ps to 4 ps (Table I), very likely reflects the transition
from TICT to PICT.

The transient absorption experiments further confirm this
conclusion. The excited state absorption also contains two
largely overlapping bands, one at 530 nm corresponds to the
TICT state formed with in 1 ps. The time resolved spectra
clearly show a state transition process within 10 ps, which
the absorption decay of TICT state accompanies with the
growing in a new absorption (PICT) around 470 nm (Fig. 4).
If we check the transient kinetics at the far blue side like
450 nm, a clear rise process can be resolved and this rise
dynamics well agree with 1 ps–4 ps process in the fluorescence
transients (Fig. 6(c)). So, after the intramolecular charge
transfer [Fig. 6(a) and 6(b)], TICT state partially converts
to PICT state within about 10 ps. And then, the two states
relax differently reflecting their physical nature. At the blue
side, the excited state absorption mainly contributed by PICT
state shows relatively slow decay. At 450 nm, the signal
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without interference of TICT has a single lifetime 1.2 ns
(Fig. 6(c)), which again agrees with the fluorescence result.
The excited state absorption at 530 nm (TICT) evolutes just as
the above three cases, finally reach the dark state after 600 ps.
And the amplitude of the long-lived absorption component
for the dynamics at 530 nm is relatively larger due to the
contribution from the PICT absorption signals. The full excited
state dynamic pathways for MPTE and MPTEA are shown
in Fig. 7:(a) represents dynamic pathways for MPTE and
MPTEA in less polar solvents; (b) and (c) represent two
dynamic processes occurring simultaneously for MPTEA in
high polar solvent. In order to explain these processes more
clearly, we show the scheme for the excitation, geometry
relaxation, and emission of the TICT and PICT states in MPTE
and MPTEA in Scheme 1.

IV. CONCLUSION

The excited state dynamics of the donor-or acceptor-derived
2-MPT molecular fluorescent switches has been studied by
ultrafast spectroscopy, the full excited state pathways are:
(1) LE state transition to TICT state within 1 ps; (2) TICT
state partially transformation to PICT state within 10 ps;
(3) TICT state stabilization to a twisted dark state during sev-
eral hundreds picoseconds. Briefly, after excitation, intramole-
cular charge transfer process creates the TICT excited state
within 1 ps. The transition from the LE state to the TICT
state leads to the charge redistribution in the molecules. Then
the molecular nuclear conformation will change to stabilize the
TICT state, it takes about 600 ps–700 ps to reach a state with
tens nanoseconds lifetime. The relaxation of TICT state causes
the further twist of the molecular conformation (especially the
moiety 2-MPT) and reduces the transition moment. The final
state is nearly dark state with very small transition moment,
which is the main reason for the drastically decrease of the
fluorescence quantum field relative to the moiety 2-MPT. For
MPTEA with a strong electron donor (amino groups) in high
polarity solvents such as acetonitrile, TICT state partially
transfer to a planar configuration state PICT within 10 ps due
to the strong dipole-dipole interaction with solvent molecule.
PICT state gives relatively strong emission with large red shift.
The understanding of excited state dynamics is important for
exploring novel molecular switches, which can be used in
optical biolabels, sensors, and logic gates.
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