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Integrated optofluidic-microfluidic 
twin channels: toward diverse 
application of lab-on-a-chip 
systems
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Ying-Shuai Wang1, Yong-Lai Zhang1, Qi-Dai Chen1, Katsuhiko Ariga3,4, Yu-De Yu5 & 
Hong-Bo Sun1,2

Optofluidics, which integrates microfluidics and micro-optical components, is crucial for optical 
sensing, fluorescence analysis, and cell detection. However, the realization of an integrated system 
from optofluidic manipulation and a microfluidic channel is often hampered by the lack of a universal 
substrate for achieving monolithic integration. In this study, we report on an integrated optofluidic-
microfluidic twin channels chip fabricated by one-time exposure photolithography, in which the twin 
microchannels on both surfaces of the substrate were exactly aligned in the vertical direction. The 
twin microchannels can be controlled independently, meaning that fluids could flow through both 
microchannels simultaneously without interfering with each other. As representative examples, 
a tunable hydrogel microlens was integrated into the optofluidic channel by femtosecond laser 
direct writing, which responds to the salt solution concentration and could be used to detect the 
microstructure at different depths. The integration of such optofluidic and microfluidic channels 
provides an opportunity to apply optofluidic detection practically and may lead to great promise for the 
integration and miniaturization of Lab-on-a-Chip systems.

Using a lab-on-a-chip with microfluidic channels and active microfluidic devices, conventional processes, such 
as chemical or biological sample preparation and optical or electronic analysis, normally performed in a lab can 
be miniaturized and performed on a single chip1–3. Due to the significant benefits of the scaling down of size, 
minimal consumption of reagents, and reduced manufacturing costs, lab-on-a-chip has potential applications in 
chemical, biological and medical analyses4–6. To realize different optical components and to create a highly versa-
tile microsystem, optofluidics, which integrates microfluidics and micro-optical components that have previously 
been used outside the chip can now be integrated into a micro- or nanoscale chip, provides a unique solution for 
generating, manipulating, and controlling optical signals on a chip-based platform7–10. Until now, the majority of 
optofluidic research has been focused on the fabrication of optical components controllable by fluidics, including 
optical lenses, waveguides and a light source11–15. The critical goal of creating optical components is to build an 
integrated system of devices in which the optofluidic component is used to detect, analyze, and physically manip-
ulate micro-objects or nano-objects in the adjacent fluidic environment16–20. However, for the above-mentioned 
goals, only particle trapping studies by optofluidic manipulation have been reported. Schmidt et al. showed an 
optofluidic chip as an all-optical particle concentrator based on a fully planar geometry utilizing counterprop-
agating liquid-core waveguide modes to form a loss-based optical trap21. Meanwhile, to manipulate nanoscopic 
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matter precisely, Yang et al. reported on the optofluidic trapping and transport of 75-nm dielectric nanoparticles 
and λ -DNA molecules using subwavelength liquid-core slot waveguides22.

In the present microfluidic channel system, the dominant technology of optical micro-detection and anal-
ysis is the introduction of fabricated micro-optical components rather than optofluidic devices, which adjust 
the optical properties of optical elements by controlling fluids23,24. Various 2D and 3D micro-optical compo-
nents can be flexibly integrated into a microfluidic channel by femtosecond laser direct writing to improve the 
portability of lab-on-a-chip systems25,26. Stimuli-responsive hydrogels are a class of cross-linked polymers that 
have the ability to absorb water, which can undergo phase transitions, wherein an external stimulus, such as 
pH, temperature, ion concentration, or light, gives rise to distinct volumetric changes in these hydrogels27–31. 
Essentially, physic-chemical changes in the hydrogel polymer network and the movement of water and ions into 
and out of the polymer matrix occur due to stimuli. Stimuli-responsive hydrogel microlenses, which have a signif-
icant advantage over conventional microfluidic microlenses owing to their ability to undergo abrupt volumetric 
changes in response to their surrounding aqueous environment without the requirement of external controls 
and even power sources, were integrated into microfluidics, thus providing microfluidic systems with autono-
mous functionality32,33. However, the realization of an integrated system from optofluidic manipulation and a 
microfluidic channel is often hampered by the lack of a universal substrate for achieving monolithic integration. 
Specifically, out-of-plane optofluidic devices, with their optical axes perpendicular to the substrate, are compati-
ble with conventional fixed micro-optical components and are one of the most mainly used optofluidic detection 
and analysis methods for projecting and imaging. The fabrication process of the precise alignment of optofluidic 
and microfluidic channels along the whole channel length in the perpendicular direction should be carried out 
with special attention and is usually of considerable complexity, thus restricting their use and diminishing poten-
tial applications. Therefore, an ingenious route to the rational design, fabrication and integration of both optoflu-
idic and microfluidic channels is highly desired.

Here, we report on a UV-lithography technique for the integration of twin optofluidic and microfluidic chan-
nels together at relative positions on both sides of one substrate, which could be used to detect microfluidic 
channel through the reading of optofluidic signal. As an example, by using the twin optofluidic and microfluidic 
channels chip, we fabricate a hydrogel microlens in the optofluidic channel by using a femtosecond laser, which 
could adjust the focal length by using salt solutions with different concentrations. Imaging detection confirms 
that the images of microstructures at different depths in the adjacent microfluidic channel can be obtained via the 
optofluidic channel. The unique integration structure of optofluidic and microfluidic channels should provide a 
series of special functionalities to facilitate the development of diverse applications of the optofluidic chip.

Results
A one-time exposure method was used here to fabricate the twin optofluidic and microfluidic channels (Fig. 1a). 
Traditional two-side exposure method has been widely used to fabricate microfluidic chip and has advantage of 
the production of accurate non-symmetrical channel morphology. In this research, for the purpose of achiev-
ing the real detection, analysis and manipulation of the microobjects by using optofluidic system, an integrated 
chip with the symmetrical channel morphology up and down transparent substrate is necessary. The one-time 
exposure method can satisfy this requirement of chip, a transparent substrate (e.g., cover glass) is needed for 
light pass during lithography and let the optical signal pass through during the detection. So compared with the 
traditional two-side exposure method34, we provided the method which was more simple, flexible and conven-
ient to fabricate aligned microchannels by UV exposure once, and during the fabrication, the method does not 
require the alignment process. SEM images of the twin microchannels are shown in Fig. 1b–g. The morphology 
of the microchannels was good, the side walls were perpendicular to the glass substrate and the rectangular 
cross-section boundary of the microchannels was clear. Microfluidic chips with different depths could be fabri-
cated by adjusting the dilution ratio of SU-8 2050 with cyclopentanone and the rotation speed. The thicknesses 
of the SU-8 films were 15 μ m, 33 μ m and 45 μ m, while the ratios of SU-8 2050 with cyclopentanone were 2:1, 5:1 
and 10:1 by mass at the rates of 650 rpm, 650 rpm and 1000 rpm, respectively. Twin microchannels chips with the 
corresponding depths can be easily fabricated. SEM images of the cross-section of the fabricated chips are shown 
in Fig. 1b–d. In Fig. 1b, using a microchannel mask with a width of 100 μ m, the measured widths of the upper 
and lower microchannels were 99.3 μ m and 97.9 μ m, respectively, showing a slight width mismatch of 1.4 μ m 
between both microchannels. The slight width decrease of the lower microchannel may have been caused by light 
scattering loss through the glass during exposure. The mismatch in width of the twin microchannels of Fig. 1c,d 
were also less than 3 μ m, accounting for only approximately 3% of the microchannel width, which did not affect 
the twin properties and the detection function brought by the twin microchannels. Because the preparation of 
the microchannels was a UV lithography process, various shapes of microchannels with different widths could 
be prepared by designing the corresponding mask patterns. Figure 1e–g show the SEM images of microchannels 
with widths of 200 μ m, 100 μ m and 50 μ m, respectively. We injected different kinds of solutions into the twin 
microchannels respectively, and saw that the aligned twin microchannels on both surfaces of the coverslip can be 
controlled independently, meaning that different chemical or biological reactions could occur simultaneously in 
both microchannels without interfering with each other (Fig. S1 in supporting information).

In order to obtain a better morphology of twin microchannels chip, we investigated the influence of the expo-
sure time on the fabrication. We fabricated twin microchannels chip with exposure time of 8 min, 10 min and 
15 min, and characterized the morphology of the chips (Fig. S2 in supporting information), found that the polym-
erization degree of the SU-8 film on both sides of the coverslip was a little different. When the exposure time was 
8 min, the SU-8 film on both sides of the coverslip could not be cross-linked well simultaneously, we can see some 
traces on the chip from the optical microscope image (Fig. S2a). And from the SEM images, the SU-8 film on the 
side near to the light source was cross-linked well, but it could be observed that the film on the far side was not 
polymerized sufficiently from the magnified SEM image (Fig. S2e). And if the exposure time was 15 min, from the 
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optical microscope image, we can see that there was SU-8 photoresist residues in the microchannels (Fig. S2k).  
The SEM images showed that on the near side, SU-8 photoresist in the microchannels have also cross-linked 
and could not be developed in the SU-8 developer so the microchannels would have been blocked (Fig. S2l,m), 
and the film on the far side was cross-linked well (Fig. S2n,o). When the exposure time was 10 min, the twin 
microchannels were complete, and there were nearly no SU-8 photoresist residues in the microchannels. This was 
because that the coverslip used in the experiment was about 180 μ m thick, much thicker than the SU-8 film, and 
the UV light would attenuate through the coverslip. During the one-time exposure process, SU-8 film on both 
sides of the coverslip should be cross-linked. So the exposure time used to fabricate the twin microchannels chip 
here was much longer than the twice of the exposure time to cross-link the film which has the same thickness. 
Zou et al. used a novel hybrid patterning technique based on hot embossing and inverse UV photolithography to 
fabricate microchannels and nanochannels simultaneously. In this work, 30 μ m thick layer of SU-8 (MicroChem, 
SU-8 2015) was spin-coated onto the glass substrate with a thickness of 1 mm. After prebaked, the SU-8 layer was 
exposed to UV light from the back side of the glass substrate at the optical power density of 227.6 μ W·cm−2 for 
10 min to cross-link the photoresist35. So the exposure time has great influence on the morphology of the twin 
microchannels.

For optofluidic tunability of the optofluidic channel in the twin microchannels chip, a “smart” hydrogel, which 
can change shape and volume under various environment stimuli, was selected to fabricate the micro-optical 
component. Poly (ethylene glycol)s-based hydrogels have found widespread applications as biomaterials because 
of their particularly biocompatibility and has been studied as a component to fabricated tunable hydrogel micro-
lens by some methods such as imprint lithography36. We choose the poly (ethylene glycol) diacrylate (PEG-DA) 
hydrogel here because of its property that it could swell when immersed in a water-ethanol solution of chloride 
salt. The PEG-DA monomer could be easily photocrosslinked when methylene blue (MB) is employed as a pho-
tosensitizer. A pinpointed femtosecond laser direct writing (FsLDW) was used to fabricate the PEG-DA hydrogel 
microstructures. This technology has shown a special capability for prototyping complicated 3D microstructures 
with nanometric resolution by using a wide range of photosensitive materials37–40. The laser power density used 

Figure 1.  (a) Process flow of the twin optofluidic and microfluidic channels fabrication. Cross-section SEM 
images of twin microchannels with depths of 15 μ m (b), 33 μ m (c) and 45 μ m (d), respectively. (e–g) SEM 
images of microchannels with different widths of 200 μ m (e), 100 μ m (f) and 50 μ m (g), as well as various 
shapes: cross-shaped (e), spherical (f), orthogonal (g). Scale bar: 100 μ m.
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for fabrication was carefully optimized to improve the morphology of the PEG-DA hydrogel microstructures 
and we found that the surface smoothness was improved as the average laser power density reduced. The surface 
morphology of the hydrogel microstructures was better when the average laser power density was 4.5 mW∙μ m−2 
and the scanning step was 100 nm (Fig. S3 in supporting information). A PEG-DA hydrogel micro-optical com-
ponent, i.e., a hyperbolic microlens with a radius of 10 μ m and height of 5 μ m, was fabricated by FsLDW (Fig. 2a), 
and the side view image was shown in Fig. 2b. The imaging capability and focusing capability were investigated 
and characterized, the optical imaging of letters “F”, “A” and “SUN” were shown as Fig. 2c. Under illumination 
by a halogen lamp, a bright focal spot was observed, Fig. 2d displayed the normalized light intensity distribution 
along a dotted line across the center of the focusing point, which indicates that the hydrogel microlens has very 
good optical property.

Taking advantage of the stimulus-response properties of the hydrogel materials, hydrogel-based microlenses 
present excellent optical tunability under external environment stimuli. When the PEG-DA microlenses were 
immersed into a water-ethanol solution of chloride salt, the solvent diffused into the hydrogel network could 
induce the microlenses to swell and the focal length to change. The tuning process of the hydrogel microlens was 
short and the focal length changed completely within a few minutes (Fig. S4). After the microlens immersed into 
solution for 5 minutes, the microlens swelled sufficiently, we measured the focal length of the PEG-DA hydro-
gel microlens in different ratios of CaCl2 aqueous solution, respectively. From the curve of Fig. 3a, it could be 
observed that the focal length of the PEG-DA microlens increased from 278 μ m to 436 μ m when the ratio of 
CaCl2 aqueous solution increased from 0 to 40%, and the focal length of the same microlens in air was 80 μ m. 
When the hydrogel microlens was immersed into a water or CaCl2 water-ethanol solution, the microlens could 
swell due to the solution diffusing into the hydrogel network. By increasing the ratio of CaCl2 aqueous solution 
in the water-ethanol mixture, a larger swelled volume of the immersed microlens could be achieved due to the 
stronger infiltration from the surrounding mixture solution. Figure 3b shows the side view images of a PEG-DA 
hydrogel microlens under different ratios of CaCl2 aqueous solution in the water-ethanol mixture; an increas-
ingly swelled volume could be observed as the ratio of the salt solution increased. Curvature radii of the swelled 
microlens in the surrounding mixture solution were calculated. The curvature radii of the hydrogel microlens 
in air and in water were approximately 57.4 μ m and 56.1 μ m, respectively. With increased ratio of the CaCl2 

Figure 2.  (a) SEM image of hyperbolic microlens from PEG-DA hydrogel with a radius of 10 μ m and height of 
5 μ m. (b) Side-view image of the hyperbolic microlens. (c) Focusing test and imaging test of PEG-DA microlens 
in air. (d) Normalized light intensity distribution along the dotted line. Scale bar: 5 μ m.
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aqueous solution, the curvature radius increased from 48.3 μ m at a 10% ratio to 54.3 μ m at 40%. This was because 
the microlens expansion in the horizontal direction was restricted by the glass substrate, microlens expansion 
primarily along the lateral direction at first induced a decrease of the curvature radius. With increasing degree 
of hydrogel microlens expansion in the CaCl2 water-ethanol solution, the lateral expansion almost reached the 
maximum and expansion in the horizontal direction led to the curvature radius increasing slightly. We analyzed 
that the microlens swelled via solution diffusion, the refractive index of the microlens changed, which was the 
major reason for the focal length changing. When the ratio of CaCl2 aqueous solution became larger, we meas-
ured that the refractive index of the stimuli solvents also became larger. And after the microlens absorbed water 
and swelled, the refractive index of the hydrogel microlens will be smaller. So the effective refractive index differ-
ence between PEG-DA microlens and the outside environment solutions would be smaller as the ratio of CaCl2 
aqueous solution increased. We calculated the effective refractive index difference between PEG-DA microlens 
and the outside environment solutions, the results were consist with the analysis (Table S1 in supporting infor-
mation). Additionally, it is worth noting that the response was reversible and the focal length could be cyclically 
tuned by changing the surrounding solutions. We fabricated hydrogel microcubes, immersed and sonicated in 
water, and found that the adhesion between the substrate and the hydrogel microstructures was well (Fig. S5 and 
S6), so we think that the hydrogel microlens would not be destroyed and would not separate from the substrate 
when cyclically tuning the focal length.

To evaluate the tunability of the fabricated microlens, three transparent thin layers, of which one side is a grat-
ing pattern with a period of 50 μ m, were placed below the hydrogel microlens at different distances. The angled 
line direction of the three grating patterns was not parallel to clearly observe the projection through the micro-
lens. According to the focal lengths of the hydrogel microlens in different ratios of CaCl2 aqueous solution meas-
ured previously, the distances between the grating pattern and the microlens were 200 μ m, 430 μ m and 1160 μ m, 
respectively. Figure 3c shows the schematic illustration of the test procedure. At first, the microlens was placed in 
air; the focal length was measured as 80 μ m, and the images of all three grating patterns could be observed at the 
image plane because they were all placed outside the focal point. When the microlens was immersed into water, 
the focal length was increased to 278 μ m, and only the images of two grating patterns were observed at the image 
plane; the grating pattern at 200 μ m, which was nearest to the microlens, was inside the focal point. After stimu-
lation of the chloride salt solution, the focal length of the PEG-DA microlens increased from 372 μ m to 424 μ m as 

Figure 3.  (a) Dependent curve of focal length on the stimuli solvents of different ratios of a CaCl2 aqueous 
solution, where α  is the volume of the saturated CaCl2 aqueous solution and β  is the total volume of the 
solution. (b) Side-view images of a hydrogel microlens with a radius of 20 μ m and height of 8 μ m after 
changing the surrounding solutions. Scale bar: 10 μ m. (c) Schematic of the tunable imaging test of the PEG-DA 
microlens. LI, LII and LIII stand for three layers with the grating pattern below the microlens. F1, F2, F3 and 
F4 represent the focal point in air, water, 20% and 40% CaCl2 solution (left). Images 1–4 (bottom right) show 
the images formed by the microlens when changing the focal length. The corresponding optical microscopic 
pictures are shown in (d).
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the ratio of the CaCl2 aqueous solution increased from 10% to 30%; the grating pattern at 430 μ m was always out-
side the focal point and similar results could be observed as in water. However, when approaching the focal point, 
the images of the grating patterns became larger and blurrier as the ratio of the CaCl2 aqueous solution increased. 
When the solution around the PEG-DA microlens was changed to 40% CaCl2 saturated aqueous solution and 
60% ethanol, the focal length became 436 μ m; only the image of the grating pattern at 1160 μ m was in the image 
plane. All of the images are shown in Fig. 3d.

The tunable PEG-DA microlens could be easily integrated in situ into the optofluidic channel of the twin 
microchannels chip via FsLDW. A SEM image of a PEG-DA microlens inside a microchannel is shown in Fig. 4a. 
To further verify the imaging performance of the microlens and the utility of the twin microchannels, we used the 
PEG-DA microlens to observe polystyrene spheres with a radius of 5 μ m and human umbilical vein endothelial 
cells (HUVEC) with a radius of approximately 15–20 μ m in the microfluidic channel. Figure 4b is the schematic 
image of the cell or particle imaging using the PEG-DA microlens in an integrated twin microchannels chip. 
Using the twin microchannels chip, a transparent glass substrate was between the optofluidic channel and micro-
fluidic channel, so it could not be avoided that optical interference and thermal interference could occur between 
the twin microchannels. The optical interference was expected in the experiment, because of the optical interfer-
ence that we achieved the optical detection and optical imaging of microfluidic channel. The thermal interference 
caused by the optical interference was not expected in the experiment. But in the similar works, researchers 
used micro-optics to observe and focus on microobjects or live cells. Under illumination, the temperature of the 
surrounding environment would change because of the microlens focusing41,42. So we think that the temperature 
changed very little, and during the imaging process, the thermal interference has only a little influence on the 
result of the experiment. We injected the polystyrene spheres suspension and cell suspension into the microflu-
idic channel with a depth of approximately 30 μ m. Figure 4c,d show the images of the polystyrene spheres and 
cells formed by the microlens in air, respectively. Because the focal length of the microlens (80 μ m) was smaller 
than the distance between the microlens and upper surface of the microchannel (170 μ m), as well as the thickness 

Figure 4.  (a) SEM image of a hyperbolic microlens integrated within the optofluidic channel. Scale bar: 50 μ m. 
(b) Schematic of the focusing characteristic resulting from the PEG-DA microlens in the integrated twin 
optofluidic and microfluidic channels. (c,d) Images of polystyrene spheres and HUVEC formed by a microlens 
using the twin optofluidic and microfluidic channels.
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of the coverslip, images of all microparticles or cells below the microlens through the microchannel in the per-
pendicular direction could be collected. When the supporting environment was changed to water or a CaCl2 
water-ethanol solution, the focal length of the microlens became larger than 278 μ m, and the distance between the 
microlens and the lower surface of the microchannel was 200 μ m; thus, no projection image was observed. If the 
microchannel was deep enough, we could adjust the focal length of the hydrogel microlens to realize the particle 
or cell imaging at different depths in the microfluidic channel.

The method of one-time exposure photolithography combined with FsLDW does not require a complex and 
precise alignment procedure. In addition to the integration of the microlens in the twin microchannels chip, 
the twin microchannels were highly promising for the integration of various passive and active micro-optical 
devices, including polymeric optical switches, wavelength division multiplexing, on-chip microlasers and opti-
cal amplifiers for lab-on-a-chip optofluidic applications. The integrated chip with twin optofluidic-microfluidic 
channels possesses many functions, e.g., detection, analysis, and physical manipulation, which greatly enhance 
the Lab-on-a-Chip functionalities for practical application.

Discussions
The present work demonstrated that the twin optofluidic and microfluidic channels integrated in one chip have 
been fabricated successfully in the vertical direction of the substrate with exact alignment via one-time exposure 
photolithography. Flexibility and simplicity make the one-time exposure photolithography a powerful tool for 
twin microchannels integrated in one chip, and the twin microchannels with various scales and shapes have 
been easily fabricated. As a proof of concept, a hydrogel microlens was fabricated in the optofluidic channel, and 
the focal length of the hydrogel microlens by FsLDW was adjusted by adjusting the salt ion concentration of the 
environment solution. Images of microstructures at different depths were obtained by tuning the focal length of 
the microlens. By introduction various tunable micro-optical components within the optofluidic channel, the 
integrated chip with twin optofluidic-microfluidic channels possesses many functions, e.g., detection, analysis, 
and physical manipulation. We believe that this method will be applied to broader applications in the functional-
ization and miniaturization of Lab-on-a-Chip systems.

Methods
Twin optofluidic and microfluidic channels fabrication.  The twin optofluidic and microfluidic chan-
nels were prepared using UV-lithography35. During the lithography process, aligned microchannels on both sur-
faces of the coverslip were fabricated simultaneously by performing only one UV exposure. The experimental 
details are shown as follows (Fig. 1a). Firstly, a coverslip was sonicated in acetone, absolute ethanol and deionized 
water for 30 min, respectively. Then the coverslip was dried in an oven at 95 °C for 5 h to completely evaporate 
water molecules from the substrates. Negative epoxy resin SU-8 2050 (Nano-Micro-Chem Company, American) 
diluted with cyclopentanone at the ratios of 2:1, 5:1 and 10:1 by mass and stirred with a magnetic stirrer for 
24 h. The diluted photoresist was spin-coated on one surface of the coverslip for 60 s at different rotation speed. 
Subsequently, the photoresist was prebaked on an electronic hot plate to completely evaporate the solvent at 95 °C 
for 15 min and cooled to room temperature, it is worth noting that the time of prebaking would be properly and 
sufficiently. Then the coverslip was turned over and the previous process was repeated. In this process, no defects 
or film morphology deformation would occur, the films and the substrate had very good adhesion, this process 
didn’t lead to the detachment of the SU-8 film and the coverslip (Fig. S7). After finishing that, the microchannels 
on both surfaces of the coverslip were fabricated with an optical power density of 15 mW∙cm−2 and exposure time 
of 10 min. Because the SU-8 2050 photoresist is sensitive to ultraviolet light, ranging from 350 nm to 400 nm, here 
365 nm was selected as the radiation wavelength. The twin microchannels chips with different widths and shapes 
could be fabricated by using different masks. After exposure, the sample was baked at 95 °C for 15 min, cooled to 
room temperature and developed in a SU-8 developer for 12 min to remove the unexposed areas on both surfaces, 
and rinsed in isopropyl alcohol for 15 s to remove the SU-8 developer. Finally, the aligned SU-8 microchannels 
were obtained, a cured PDMS slice was used to cover the SU-8 channel and pressed for adhesion.

Hydrogel polymerization.  Hydrogel microlenses in the optofluidic channel were fabricated using a 
home-made FsLDW system. The hydrogel prepolymer solution consisted of 100 μ l of PEG-DA and 30 μ l of MB 
(3 mg/ml) aqueous solution43,44. The mixture was sonicated in the dark for 5 min in a water bath to assure dis-
solution of all the chemicals and was used immediately. About 20 μ l prepolymer solution was dropped onto the 
obtained twin microchannels and a small chamber of PDMS was used during the fabrication to minimize the 
effect of solution evaporation. The laser beam from a femtosecond laser (Spectra Physics 3960-X1BB, 80 MHz 
repetition rate, 120 fs pulse width and 780 nm central wavelength) was tightly focused by a 100×  oil immersion 
objective lens with a high-numerical-aperture (Olympus, NA =  1.40) to directly write the hydrogel microlenses. 
After fabrication, the sample was rinsed in water several times to remove the unpolymerized prepolymer solution, 
according to the volumes of the microlenses, the prpolymer solution used for the fabrication was only a little part 
of the solution drop. Then the microlenses were obtained inside the optofluidic channel.

Response measurement and optofluidic tunability of microlenses.  According to the responsivity 
of the PEG-DA hydrogel, a water-ethanol solution of chloride salt was used to swell the hydrogel microlenses45. 
The solution consisted of a saturated CaCl2 aqueous solution and ethanol solution of CTAB (2 mg/ml), in which 
ethanol was used to accelerate the swelling process and enhance the diffusion of the saturated aqueous salt solu-
tion into the PEG-DA hydrogel, and a small amount of CTAB was used to improve the uniformity of the solution 
on the PEG-DA microlens surface. Different ratios of CaCl2 aqueous solution and ethanol were used as stimuli 
solvents for the focal length tuning. 10% of the CaCl2 aqueous solution was defined as a mixture of 10% (volume 
ratio) CaCl2 saturated aqueous solution and 90% ethanol.
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Characterization.  The surface morphologies of the twin optofluidic and microfluidic channels and the 
hydrogel microstructures were characterized by using a field emission scanning electron microscope (SEM, JSM-
7500F, JEOL, Japan). A thin layer of Au was sputtered onto the sample for better SEM imaging. Optical micro-
graphs were taken by a Motic BA400 microscope and a charge-coupled device.

References
1.	 Hakimi, N., Tsai, S. S. H., Cheng, C. H. & Hwang, D. K. One-Step Two-dimensional microfluidics-based synthesis of three-

dimensional particles. Adv. Mater. 26, 1393–1398, (2014).
2.	 Xu, B. B. et al. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 13, 

1677–1690, (2013).
3.	 Casquillas, G. V., Berre, M. L., Piel, M. & Tran, P. T. Microfluidic tools for cell biological research. Nano Today 5, 28–47, (2010).
4.	 Yeo, L. Y., Chang, H. C., Chan, P. P. Y. & Friend, J. R. Microfluidic devices for bioapplications. small 7, 12–48, (2011).
5.	 Candelier, R. et al. A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish. Sci. Rep. 5, 

12196, (2015).
6.	 Ottesen, E. A., Hong, J. W., Quake, S. R. & Leadbetter, J. R. Microfluidic digital PCR enables multigene analysis of individual 

environmental bacteria. Science 314, 1464–1467, (2006).
7.	 Pang, S., Han, C., Lee, L. M. & Yang, C. H. Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic 

microscope. Lab Chip 11, 3698–3702, (2011).
8.	 Nguyen, N. T. Micro-optofluidic lenses: a review. Biomicrofluidics 4, 031501, (2010).
9.	 Psaltis, D., Quake, S. R. & Yang, C. H. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 

381–386, (2006).
10.	 Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media using optofluidics. Nature Photon. 5, 598–604, (2011).
11.	 Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130, (2004).
12.	 Vezenov, D. V. et al. A low-threshold, high-efficiency microfluidic waveguide laser. J. Am. Chem. Soc. 127, 8952–8953, (2005).
13.	 Helbo, B., Kristensen, A. & Menon, A. A micro-cavity fluidic dye laser. J. Micromech. Microeng. 13, 307–311, (2003).
14.	 Wang, J. W., Yao, Z. S., Lei, T. & Poon, A. W. Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering 

pattern recognition with pixelized mode-field-intensity distributions. Sci. Rep. 4, 7528, (2014).
15.	 Liu, X. et al. Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted 

replication. Faraday Discuss. 174, 153–164, (2014).
16.	 Soltani, M. et al. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nature Nanotech. 9, 448–452, (2014).
17.	 Renaut, C. et al. On chip shapeable optical tweezers. Sci. Rep. 3, 2290, (2013).
18.	 Lin, S. Y., Schonbrun, E. & Crozier, K. Optical manipulation with planar silicon microring resonators. Nano Lett. 10, 2408–2411, 

(2010).
19.	 Liu, S. et al. Correlated electrical and optical analysis of single nanoparticles and biomolecules on a nanopore-gated optofluidic chip. 

Nano Lett. 14, 4816–4820, (2014).
20.	 Mishra, K. et al. Optofluidic lens with tunable focal length and asphericity. Sci. Rep. 4, 6378, (2014).
21.	 Kühn, S., Lunt, E. J., Phillips, B. S., Hawkins, A. R. & Schmidt, H. Optofluidic particle concentration by a long-range dual-beam trap. 

Opt. Lett. 34, 2306–2308, (2009).
22.	 Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75, 

(2009).
23.	 Qiao, L. L. et al. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining. Appl Phys 

A 102, 179–183, (2011).
24.	 Lim, J., Gruner, P., Konrad, M. & Baret, J. C. Micro-optical lens array for fluorescence detection in droplet-based microfluidics. Lab 

Chip 13, 1472–1475, (2013).
25.	 Wu, D. et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser 

microfabrication for coupling-free optofluidic cell counting. Light: Science & Applications 4, e228, (2015).
26.	 D. X. Lu, et al. Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. J. Mater. Chem. C 3, 1751–1756, 

(2015).
27.	 Sun, Y. L. et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light: Science & Applications 3, e129, 

(2014).
28.	 Reboud, V. et al. Imprinted hydrogels for tunable hemispherical microlenses. Microelectronic Engineering 111, 189–192, (2013).
29.	 He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218, (2012).
30.	 Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into 

complex micropatterns. Science 315, 487–490, (2007).
31.	 Kim, J., Serpe, M. J. & Lyon, L. A. Hydrogel microparticles as dynamically tunable microlenses. J. Am. Chem. Soc. 126, 9512–9513, 

(2004).
32.	 Dong, L. & Jiang, H. R. Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3, 1223–1230, (2007).
33.	 Jung, J. H., Han, C., Lee, S. A., Kim, J. & Yang, C. H. Microfluidic-integrated laser-controlled microactuators with on-chip 

microscopy imaging functionality. Lab Chip 14, 3781–3789, (2014).
34.	 Huang, Y. T. & Hsu, W. Fabricating embedded SU-8 microstructures with asymmetric inside cross section by double-side multiple 

partial exposure method. Microelectronic Engineering 121, 64–67, (2014).
35.	 Yin, Z. F., Cheng, E. & Zou, H. L. A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot 

embossing and inverse UV photolithography, Lab Chip 14, 1614–1621, (2014).
36.	 Reboud, V. et al. Imprinted hydrogels for tunable hemispherical microlenses, Microelectronic Engineering 111, 189–192, (2013).
37.	 Krini, R. et al. Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated 

polymerization technique. Macromol. Rapid Commun. 36, 1108− 1114, (2015)
38.	 Sun, Q., Ueno, K. & Misawa, H. In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the 

drying process. Opt. Lett. 37, 710–712, (2012).
39.	 Xiong, W. et al. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon 

polymerization and multiphoton ablation. Light: Science & Applications 1, e6, (2012).
40.	 Xiong, W. et al. Direct writing of graphene patterns on insulating substrates under ambient conditions. Sci. Rep. 4, 4892, (2014).
41.	 Schonbrun, E., Gorthi, S. S. & Schaak, D. Microfabricated multiple field of view imaging flow cytometry, Lab Chip 12, 268–273, 

(2012).
42.	 Huang, X. et al. Thermally Tunable Polymer Microlenses for Biological Imaging, Journal of microelectromechanical systems 19, 

1444–1449, (2010).
43.	 Liu, D. X. et al. Dynamic laser prototyping for biomimetic nanofabrication. Laser Photonics Rev. 8, 882–888, (2014).
44.	 Kaehr, B. & Shear, J. B. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. PNAS 105, 

8850–8854, (2008).
45.	 Ge, J. P., Goebl, J., He, L., Lu, Z. D. & Yin, Y. D. Rewritable photonic paper with hygroscopic salt solution as ink. Adv. Mater. 21, 1–6, 

(2009).



www.nature.com/scientificreports/

9Scientific Reports | 6:19801 | DOI: 10.1038/srep19801

Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos 61435005, 
51335008, 61378053, 91323301, and 91423102.

Author Contributions
C.L., W.G. and H.X. found the phenomenon of simultaneous formation of twin channels and the ensuing work 
were conducted by combination of two teams’ efforts: (i) C.L., W.G., Y.L.Z. and H.X. on exploration of suitable 
functional materials, direct laser writing and encapsulation technologies, and finally tested the chips; (2) Y.L. 
S., Z.N.T., T.J. and Q.D.C. on designing and building optical system so that large focal depth writing and optical 
imaging were possible. Y.S.W. provided critical technical helps in synthesizing nanoparticles used for channel 
examination. H.B.S., Y.D.Y. and K.A. proposed the concept of microfluidic-optofluidic twin-channels through 
numerous discussions, designed the experiments, and analyzed the data. C.L. and H.X. drafted the manuscript; 
H.B.S. revised the manuscript. All authors substantially contributed to research.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Lv, C. et al. Integrated optofluidic-microfluidic twin channels: toward diverse 
application of lab-on-a-chip systems. Sci. Rep. 6, 19801; doi: 10.1038/srep19801 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems

	Results

	Discussions

	Methods

	Twin optofluidic and microfluidic channels fabrication. 
	Hydrogel polymerization. 
	Response measurement and optofluidic tunability of microlenses. 
	Characterization. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ (a) Process flow of the twin optofluidic and microfluidic channels fabrication.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ (a) SEM image of hyperbolic microlens from PEG-DA hydrogel with a radius of 10 μ m and height of 5 μ m.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ (a) Dependent curve of focal length on the stimuli solvents of different ratios of a CaCl2 aqueous solution, where α is the volume of the saturated CaCl2 aqueous solution and β is the total volume of the solution.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ (a) SEM image of a hyperbolic microlens integrated within the optofluidic channel.



 
    
       
          application/pdf
          
             
                Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19801
            
         
          
             
                Chao Lv
                Hong Xia
                Wei Guan
                Yun-Lu Sun
                Zhen-Nan Tian
                Tong Jiang
                Ying-Shuai Wang
                Yong-Lai Zhang
                Qi-Dai Chen
                Katsuhiko Ariga
                Yu-De Yu
                Hong-Bo Sun
            
         
          doi:10.1038/srep19801
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep19801
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep19801
            
         
      
       
          
          
          
             
                doi:10.1038/srep19801
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19801
            
         
          
          
      
       
       
          True
      
   




