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Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of
constituent parts
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We have investigated the origin of the optical zero-transmission regions in different kinds of highly sym-
metric quasicrystal structures. We report on the possibility of reproducing the same optical characteristics by
using some of the constituent parts of the quasicrystals, arranged in standard photonic crystal geometries
showing translational symmetry. This finding represents a challenge to the common assumption that high-order
symmetry is the reason for the large optical zero-transmission regions shown by quasicrystals. This insight into
the field of quasiperiodic photonic devices opens up key questions about opportunities for quasicrystals in

optical applications.
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I. INTRODUCTION

Photonic crystals are structures with a periodic modula-
tion of the refractive index profile. The existence of a
gap in the transmission spectrum (TS) of such structures
provides an opportunity to confine and control the propa-
gation of electromagnetic waves."? It has been recognized
that a photonic band gap can exist, in terms of zero-
transmission region, not only in periodic lattices, but also in
quasicrystals.>~ This kind of structure has neither true peri-
odicity nor translational symmetry, but shows a quasiperiod-
icity which exhibits high-order rotational and mirror
symmetry.” Photonic quasicrystals (PQCs) have received an
increasing amount of attention in recent years. The transmis-
sion properties of many kinds of PQCs with 8-fold,%?
10-fold,'"%! and 12-fold*!'?-!4 symmetries in two dimensions
have been calculated. Moreover, experimental investigation
of three-dimensional structures was also recently
reported.'>!¢ These studies have demonstrated that most
PQCs possess wide zero-transmission regions. It is claimed
that particularly large optical gaps are found in 12-fold sym-
metric quasicrystals because of the high symmetry shown by
those structures. In this paper, we challenge such statements,
concentrating our efforts on studying different forms of 12-
fold photonic quasicrystals. We will show that photonic crys-
tals, obtained by arranging some of the quasicrystals’ con-
stituent parts in a translational symmetry pattern (constituent
parts method), can reproduce the same optical (characteris-
tics) structures realized by PQC, which leads us to conclude
that periodic and quasiperiodic structures manifest a similar-
ity much stronger than what is usually recognized. This, in
turn, must therefore reduce the role played by the high de-
gree of symmetry shown by PQC. It is interesting to notice
that this approach agrees on some level with the approximant
studies of electronic systems.!” According to this method it is
possible to identify an infinite countable set of structures
which tend to reproduce the same electro-optical properties
of the quasicrystal itself.'"® Their main characteristic is to
show translational symmetry in a higher-dimensional space
than the quasicrystal. Because of this peculiarity, they are
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relatively easy to investigate by means of a band-structure
analysis and this may be helpful in gaining some insights
into the properties of the associated quasicrystal. Hence, both
the constituent parts method and the approximant approach
involve the analysis of periodic lattices in some manner re-
lated to the quasicrystal. However, while the approximant
approach takes into consideration structures which are simi-
lar but not equal to the quasicrystal, the constituent parts
method studies particular pieces of the quasicrystal which,
by definition, do actually exist inside the quasiperiodic struc-
ture. In other words, the approximant method looks for a
general periodic structure which can describe the properties
of a quasicrystal, whereas our method focuses on the optical
properties of parts of the quasicrystal which assembled to-
gether reproduce the quasiperiodic structure exactly. Consid-
ering these two diametrically opposite approaches, the con-
stituent parts method is inevitably connected to the short-
range properties of the quasicrystal. As we shall see, this is
an important condition (but not sufficient) for the constituent
parts to assure the creation of a zero-transmission region in
the quasicrystal. On the other hand, this aspect cannot be
described by the approximant method, which tends to miss
some of the local information of a quasicrystal.

II. STRUCTURE

Two kinds of patterns will be investigated: Stampfli and
Penrose dodecagons. These are shown in Fig. 1. The first
[Fig. 1(a)] was built up following the random-Stampfli infla-
tion rules,*!° which show self-similarity properties. This
means that starting from a structure characterized by some
symmetries, they will be maintained by an enlarged similar
structure. Figure 2 shows the process of forming a Stampfli
quasicrystal. Two basic cells, a square and a triangle, are
arranged to realize the 12-fold symmetry. Starting from the
center of the figure and moving to the outer regions, its 19
points have the coordinates (0,0), [ (= V32, + 1/2),(0, =1)],
and  [(£(14+13/2), £1/2),(=1/2, £ (1+3/2)),(=(1/2
+3/2), = (1/2+ \6/2))]. Next, by zooming out of 2+13
(the equivalent of the golden ratio for Penrose tilings) and
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FIG. 1. (Color online) (a) Stampfli 12-fold quasicrystal. From
left, proceeding clockwise, are shown the two basic cells [small
square and triangle (A)] and two different families of parent cells (B
and C). (b) Penrose 12-fold quasicrystal. Three basic cells, a square
and two kinds of rhombi, are shown at the bottom of the figure. At
the top, a set of parent cells is highlighted.

substituting each point of Fig. 2(b) with the cell of Fig. 2(a),
a larger quasicrystal is obtained, as shown in Fig. 3. In the
end, by repeating the previous steps the structure can be
enlarged indefinitely.

From a modeling point of view we have chosen to repre-
sent the Stampfli structure as a quasiperiodic sequence of
holes in a solid background made of Si. The dimensionality
along the direction parallel to the axis of the holes is consid-
ered infinite, which makes the system a virtually two-
dimensional structure. Although such approximation is unre-
alistic from a practical point of view, it does not affect the
in-plane optical gaps which are mainly related to the two-
dimensional properties of these lattices and, at the same time,
it results in speeding up our simulations. The lattice constant
is =350 nm and holes are of radius r=0.3a. The refractive
index of the background is 3.477. Moreover, the imaginary
part of the refractive index is taken equal to zero. Such as-
sumption is justified because of our particular interest in the
telecommunication wavelength range (A= 1.55 um), where
light absorption from silicon can be neglected.

The second simulated pattern we use is also a two-
dimensional representation of a special configuration of the
Penrose dodecagon. Different from the Stampfli structure,
here three basic cells are necessary to build the quasicrystal:
a square and two rhombi having acute angles of 30° and 60°,
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FIG. 2. (Color online) (a) The two basic constituent parts,
square and equilateral triangle, of a 12-fold Stampfli quasicrystal
forming the core of the structure. (b) Only the vertices of squares
and triangles are highlighted.
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respectively.?’ From the figure the geometrical differences
between the two structures are immediately apparent, even
though both manifest 12-fold symmetry. It is also worthwhile
to mention the existence of different geometrical configura-
tions that can represent dodecagons besides the two patterns
illustrated here. The main difference with these are in the
shape of the basic constituent parts which realize the
quasicrystal.?>2* As we will describe later in detail, for the
calculations of the Penrose structure we have chosen a con-
figuration complementary to the Stampfli one, in the sense
that cylinders in air have been taken.

The range of the simulation models is 8.0 um X
X 8.0 um (x,y,z) for both the Stampfli and Penrose struc-
tures. Specifically, the rigorous coupled wave analysis
(RCWA) is used in all the simulations. This kind of ap-
proach, even though it is known for its efficiency in solving
two-dimensional structures with translational periodicity, has
given also extremely satisfactory results for quasicrystals.
Moreover, for its own nature, it is capable of an automatic
normalization of the transmitted signal which results in a
simplification of the simulations compared to a more canoni-
cal finite difference time domain (FDTD) approach. We have
actually solved the systems discussed here with both the
methods and they agree in the results (however we have
chosen to show only the RCWA simulations).>

The domain is large enough to guarantee convergent re-
sults, meaning that even when enlarging the structures there
is no shifting of the zero-transmission regions. We use a
sequence of plane waves to address the problem of transmis-
sion width in the integrated quasicrystal. As mentioned, the
interval of frequencies is chosen to fall in the telecommuni-
cation range.

A. Contributions to the zero-transmission regions: The
Stampfli quasicrystal

In Fig. 4 we show the transmission spectrum of the 12-
fold Stampfli quasicrystal of air holes in Si. In particular,
because no zero-transmission regions are obtained for the
TM case, only the TE polarization is plotted (electric field
parallel to the x-z plane). Figure 4 shows the TS along direc-
tions with angles of 0°, 5°, 10°, 15°, 20°, 25°, and 30° from

FIG. 3. (Color online) (a) 19 dodecagonal cores have been put
together to enlarge the 12-fold Stampfli quasicrystal. It is interesting
to notice that the parent cells (thick lines), which correspond to
family B in Fig. 1(a), have the same symmetry as the basic cells.
The ratio between the sides of the parent and basic cells is 2+ 3.
(b) The 12-fold quasicrystal when two steps of the Stampfli infla-
tion are taken.
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FIG. 4. (Color online) TS of 12-fold Stampfli PQC consisting of
air holes in silicon along 0°, 5°, 10°, 15°, 20°, 25°, and 30° angles
from the z direction for the TE mode. Two zero-transmission re-
gions centered at 1.26 and 1.62 um are identified (opaque back-
ground).  Specifically, the ranges are [1.22,1.30] and
[1.52,1.71] wm. Enlargements of the zero-transmission regions are
shown.

the z axis. Furthermore, because of the 12-fold characteristic
of the quasicrystal, many more angles are included in the
previous ones. For example, a 20° angle corresponds to 80°
from the z axis. From the figure we can see that the zero-
transmission regions of the Stampfli quasicrystal can be
identified by looking along the directions of high symmetry
of the structure (0°, 15°, and 30°).* A heuristic explanation
can be given when we consider that the Fourier transform of
a crystal, namely, its pattern in the reciprocal space, is still
invariant for discrete translations. Because the structure in
the real space repeats itself with a modulation given by the
lattice constant, we can define a part of it (unit cell) which
will be enough to describe the physical properties of the
complete periodic structure. In terms of Fourier transform, it
means we have to deal with only the first Brillouin zone. If
now we shift our attention to the origin of the high-symmetry
lines in the Brillouin zone, we see that they depend on the
rotational and inversion symmetries of the crystal in the real
space. In a quasicrystal there is no translational periodicity
but still its Fourier transform is well defined; namely, we can
move from real space to the reciprocal and vice versa. Of
course, for a quasicrystal we can also define its own rota-
tional and inversion symmetries which will be transported in
its reciprocal space through a Fourier transformation. How-
ever, different from standard crystals, now there is no trans-
lational periodicity so we cannot identify a smaller section of
the quasicrystal to reproduce its physical characteristics.
Hence, to identify the reciprocal of a quasicrystal the Fourier
transform of the complete structure is necessary. In other
words, for a quasicrystal the concepts of unit cell and total
structure can be considered equivalent. In this perspective,
we can then identify high-symmetry lines in the reciprocal
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FIG. 5. (Color online) 12-fold Stampfli quasicrystal with parent
family C highlighted. This family has the characteristic of being
able to fill completely the space of the quasicrystal. The ratio be-
tween the sides of parent and basic cells is 1+ V3.

space similarly to what is done for perfect crystals with the
difference that they will be not confined in space (in com-
parison, a canonical Brillouin zone has well-defined spatial
dimensions related to the unit cell in the real space). Finally,
if we combine these last considerations with the fact that
zero-transmission regions can be localized in crystals simply
by looking along high-symmetry directions, we can conclude
that also in quasicrystals it is indeed enough to observe trans-
mission along the high-symmetry lines to obtain a full de-
scription of the zero-transmission regions.

In the telecommunication frequency range, two optical TE
gaps are identified. The first extends from 1.22 to 1.30 um,
whereas the second is seen from 1.52 to 1.71 um. Because
these zero-transmission regions are manifested indepen-
dently by the direction of the incident light, they represent
full zero-transmission regions. We interpret this result as a
first indication that a 12-fold PQC could have realistic appli-
cations for telecommunication purposes.

In Fig. 1(a) three sets of constituent parts making the
Stampfli photonic quasicrystals are shown. In particular, a
basic set and two parent sets are highlighted. We have intro-
duced family C by simply revaluating the ratio between the
sides of the parent cells and the sides of the basic cell in 1
++v3 versus 2+ 3 for the standard family B. Another differ-
ence between the two families is that while C can completely
fill the whole space (see Fig. 5), B needs other kinds of
parent cells to reach the same goal. Indeed, the inner geom-
etry of both squares and triangles in family C does not
change moving away from the center of the structure, which
is not true for family B. Such a difference could suggest the
idea that to define the optical properties of the Stampfli qua-
sicrystal, family B, as defined, may be not enough. However,
we will show that it is not the case and the present definitions
are well put.

In the present work we select each of these families to
construct six translational periodic structures by arranging
the cells into triangularlike and squarelike lattices as de-
picted in the insets of Fig. 6. More precisely, we fill the
entire space following triangular, square, rhomboidal, and
rectangular configurations. To perform the correct calcula-
tions, it is important to identify the proper Brillouin zones
and hence the directions of high symmetry corresponding to
the simulated crystals. A closer look at Fig. 6(c) reveals that
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FIG. 6. (Color online) Transmission spectra of the three simu-
lated families for the Stampfli quasicrystal. The ranges of the zero-
transmission regions, highlighted in the figure, are (a) [1.27,1.69],
(b) [1.05,1.09], (c) [1.22,1.32] and [1.50,1.71], (d) [1.22,1.30] and
[1.52,1.73], (e) [1.23,1.27] and [1.48,1.76], and (f) [1.25,1.33] and
[1.71,1.86] wm. The light is TE polarized. The insets show the
corresponding geometries of the simulated photonic crystals.

by choosing a triangular supercell as the primitive cell, this
would not allow the fulfillment of requirements for a Bravais
lattice. Instead, by considering a rhomboidal structure, such
requirements can be satisfied. Similarly, Fig. 6(d) can be de-
scribed by assuming a rectangular primitive cell. Indeed,
even though the sides of the cell are equal to one another,
suggesting a square, the cell is not invariant under rotation of
/2, so a rectangular description is needed. This point is
particularly important because the directions of high symme-
try, which in turn dictate the optical properties of the device,
depend on the geometry of the unit cell.

We have hence evaluated the transmission spectrum of six
structures [families A, B, and C in Fig. 1(a)]. The calculated
spectra are displayed in Fig. 6. From them we can see that
the band gap of triangular lattice photonic crystal overlaps
nearly most of the first- and higher-order zero-transmission
regions in the 12-fold Stampfli structure (Fig. 4). Because the
triangular lattice is not the only kind of cell included in the
quasicrystal, we can expect some extra contributions arising
from the other constituent parts. Furthermore, by comparing
Figs. 4 and 6(a) we can assume that these are only higher-
order corrections, meaning that the main contribution is due
to the triangular constituent part. However, at closer inspec-
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FIG. 7. (Color online) Overlap of the fotal transmission spectra
of rectangular and rhomboid photonic supercells of family B. They
are compared with the fotal transmission of the Stampfli 12-fold
quasicrystal. Lines with same color are associated to the same struc-
ture at different angles for the incident radiation (the angles are
chosen to have the radiation propagating along the high-symmetry
directions). Enlargements of the zero-transmission regions are
shown.

tion, the transmission spectra of the supercells’ constituent
parts reveal that our previous hypothesis is not entirely cor-
rect. In fact, both Figs. 6(c) and 6(d) show two complete
band gaps which manifest a consistent overlap with the zero-
transmission regions of the 12-fold quasicrystal. To improve
our understanding we focus then on the zero-transmission
region at low wavelengths, in the range from 1.22 to
1.30 um. In Fig. 6 only five structures contribute to the
optical gap of the Stampfli quasicrystal: the triangular, the
two rhomboid, and the two rectangular crystals, even though
the triangle and the rectangle of family C give only a partial
overlap. It implies that at least for the lowest gap the super-
crystals are primarily responsible in defining the transmis-
sion properties of the 12-fold structure.

The current analysis seems then to lead to the conclusion
that supercells are the most important constituent parts of the
12-fold Stampfli quasicrystal. Figure 7 is a visual demonstra-
tion of this statement.

The next step to support our results was to calculate the
transmission spectra for configurations where all the holes
were removed except the ones associated to a particular fam-
ily (the overall dimensions of the structure are exactly the
same as for the quasicrystal). We have done it for both the
structures of family B. The transmission spectra are shown in
Fig. 8. They confirm what is shown in Figs. 6 and 7: the
transmission spectrum of the Stampfli POC is well deter-
mined by the optical behavior of some of its constituents.

These results confirm the existence of a strong relation
between the optical properties of the 12-fold Stampfli quasi-
crystal and some of its constituent parts. In particular, all of
our simulations point out that certain particular supercells
arranged with translational periodicity may realize the same
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FIG. 8. (Color online) The transmission spectra of the Stampfli
quasicrystal when only the elements of family B are left. In particu-
lar, (a) is for rhomboid and (b) is for rectangular. To each high-
lighted area corresponds a zero-transmission region. The direction
of the incident light was along the x axis. It is interesting to notice
the roughness of the profile in (b) compared to (a). It is because of
the high amount of defects existing in the rectangular geometry.

zero-transmission regions of the Stampfli dodecagon.

B. Contributions to the zero-transmission regions:
The Penrose quasicrystal

In a tentative approach toward generalizing our results,
we have considered a different kind of quasicrystal on which
to perform similar analysis. The chosen structure is the 12-
fold Penrose lattice, visualized in Fig. 1(b). Additionally, the
material distribution has also been modified, with this struc-
ture presenting rods in air, namely, the inverse of the previ-
ous simulation distribution. Because of this choice, only the
TM polarization is able to show zero-transmission zones.
The geometrical parameters utilized are a lattice constant of
a=400 nm and rods of radius r=0.25a.

From Fig. 9 we do not notice any similarity between the
12-fold Penrose lattice and its basic constituents. By means
of an inflation procedure we have then identified a set of
parent cells, which cover the dodecagon area. The transmis-
sion spectra of the three parent cells have been calculated
and compared with the optical properties of the Penrose
dodecagon. The results demonstrate once again that the zero-
transmission regions of a quasicrystal can be realized by cre-
ating a photonic crystal with one of its constituents. Indeed,
the transmission spectrum of Fig. 9(f) shows a surprisingly
good match with the spectrum of the dodecagon Penrose
lattice [Fig. 9(a)].

III. ANALYSIS AND DISCUSSION

To describe such phenomenon we have followed two ap-
proaches: the first assumes the number of constituent parts as
a fundamental parameter responsible for the quasicrystal op-
tical gap properties; and the second elects their surface area
as the main factor. However, both trivial considerations
about the relation between geometry and optical properties
of the structure and our analysis demonstrate that only the
second agrees with the presented simulations.

Let us consider first the Stampfli lattice and let us analyze
the three families of constituent parts shown in Fig. 1(a). The
amounts of coverage areas in the quasicrystal corresponding
to the supercells shown in Figs. 6(c) and 6(d) (family B) are
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FIG. 9. (Color online) (a) Transmission spectrum of a 12-fold
Penrose quasicrystal. A zero-transmission region is found for the
TM modes. Accordingly, the present configuration adopts cylinders
in air, which facilitates the creation of an optical gap for such
modes. The optical gap ranges of interest (highlighted by an opaque
area) are [1.10-1.49] and [1.62—1.66] wm. It is interesting to no-
tice the presence of sharp peaks inside the first zero-transmission
region. It is signature of defects inside the structure, which is typi-
cal in quasicrystals. (b) and (c) show the optical properties of pho-
tonic crystals with patterns following the geometry of two out of the
three basic constituents of the 12-fold Penrose quasicrystal (the
rhombus with 30° acute angle does not realize any optical gap).
Specifically (b) is for square and (c) is for rhombus with 60° acute
angle. The band gaps are found in the ranges of [1.14-1.83] and
[1.10-1.72] wm, respectively. (d)—(f) correspond to the parent set.
In detail: (d) parent square, (¢) parent rhombus with 30° acute
angle, and (f) parent rhombus with 60° acute angle. The insets show
the unit cells of the calculated pattern. The different directions of
propagation, corresponding to lines of high symmetry, are shown in
different colors. The zero-transmission regions for the last three
structures are (d) [1.09-1.67], (e) [1.13-1.23], (f) [1.10-1.50], and
[1.58-1.71] um.

54% and 46%, respectively. Because the two values are al-
most identical, we might expect a similar contribution to the
optical behavior of the photonic crystals. In fact, as con-
firmed by Fig. 7, both the supercells, arranged in a crystal
configuration, realize a photonic gap structure extremely
close to the Stampfli dodecagon. If we now consider the
coverage area of the triangular and square basic cells (family
A), the percentages of areas covered are 52% for the square
and 48% for the triangle. Accordingly, a similar contribution

115118-5



ZHAO et al.

to the optical gap of the Stampfli lattice might be expected.
However, by looking at Figs. 6(a) and 6(b), we can see that
such predictions fail to be confirmed because only the trian-
gular structure seems capable of contributing to the gap. We
need to make use of the short-range properties of the cell to
explain such an apparent contradiction.'? Indeed, we easily
notice that only the triangular cell shows the same short-
range hexagonal symmetry of the Stampfli lattice. Still the
question about the reasons which allow family B to repro-
duce the quasicrystal transmission profile remains unan-
swered. In order to explain it we must observe the basic
components forming the geometries in families A and B.
Indeed we can see that only the structures in family B are
built by using all the basic cells (square and triangle; see Fig.
1(a), family A) of the quasicrystal. This is not the case for
family A, which explains why they cannot reproduce the
same zero-transmission regions of the quasicrystal. Hence, it
seems that besides the coverage area and hexagonal short-
range symmetry, we must ensure that all the basic cells of the
quasicrystal exist in the superlattice (crystal made by super-
cells) for it to able to reproduce a similar transmission spec-
trum as the quasicrystal. Moving to family C the coverage
areas of the two corresponding structures [Figs. 6(e) and
6(f)] are 50% each. Also, both of these possess short-range
hexagonal symmetry. However, even though both the struc-
tures have same coverage area and short-range symmetry,
some substantial differences arise from the simulations of
their transmission spectra (family-C-rectangle transmission
spectrum does not show a good match with the quasicrystal).
To explain the difference in behavior between the two geom-
etries in family C, we must look once again at their basic
cells. Indeed, it is interesting to notice that even though both
of them possess the two basic cells of the Stampfli quasic-
rystal, the rectangle supercell shows also an extra basic cell
(having the shape of a rhombus with acute angle of 30°).
Insight can be gained by comparing the results of family-B
and the family-C rhomboids. These three structures show all
hexagonal short-range symmetry and they all are formed by
the two basic cells of the quasicrystal. Nevertheless Fig. 6(e)
shows the worst transmission profile (in terms of overlapping
with the quasicrystal) among the three. To explain this result
the last consideration must be taken into account: the unit
area. Indeed, it is easy to verify that both the structures in
family B have a larger area than the rhomboid in family C. In
a different way, the area is once again playing an important
role in defining the best supercells capable of reproducing
the quasicrystal zero-transmission regions.

Analogous analysis has also been carried for the Penrose
12-fold structure. In particular, if we focus our attention on

PHYSICAL REVIEW B 79, 115118 (2009)

the parent cells, our results indicate percentages of 23.5,
15.6, and 60.9 for rectangle, rhombus-30°, and rhombus-60°,
respectively. Clearly, the last shows the strongest presence
inside the Penrose lattice, about three or four times more
than the other two constituent parts, and also it is the only
one containing all the three basic cells of the quasicrystal
[see Fig. 1(b)]. This then suggests that the zero-transmission
regions of the Penrose 12-fold lattice are defined mainly by
the parent rhombus-60°, as confirmed by Fig. 9(f). Further-
more, a comparison between the coverage areas of the parent
square (23.5%) and parent rhombus-30° (15.6%) tells us that
the former should be able to produce a band structure closer
to the quasicrystal than the latter. It is also confirmed by Fig.
9. Finally, none of the three structures shows hexagonal
short-range rotational symmetry, which agrees with the dis-
crepancy between the transmission spectra of rhombus-60°
and the quasicrystal. Shifting now our attention on the three
basic cells, we find that their percentage distributions show
similar values. It implies that none of these geometries is
able to deeply characterize the quasicrystal. However only
the configuration showing short-range hexagonal symmetry
(basic-rhombus-60°) is able to realize a band gap which
overlaps both the zero-transmission regions of the Penrose
quasicrystal.

This analysis, even though it is sufficient to explain the
optical behavior of the quasicrystals examined in relation to
their own constituent parts, must however be seen as just a
heuristic approach. A more detailed analysis could, for ex-
ample, be performed by considering the relation between the
constituent parts of the quasicrystals and their approximant
structures. However, such a kind of analysis is not the main
goal of the present paper, and it is left for further studies.

In conclusion, we have investigated the origin of the zero-
transmission regions of photonic quasicrystals showing high
rotational symmetry. The commonly accepted idea that this
characteristic is the main reason for large optical zero-
transmission regions is reconsidered. We have challenged
this concept, by demonstrating that the optical properties of
some quasicrystals have their origin in the properties of their
constituent parts. According to our considerations, these need
only to respect the conditions of being supercells, to be built
by using the same basic cells of the quasicrystal and, possi-
bly, they must possess the same short-range rotational sym-
metry of the quasicrystal.
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