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ABSTRACT: Solar interfacial evaporation has been recognized as a versatile energy conversion
protocol for cutting-edge applications such as water treatment and power generation (e.g., hydro
voltaic effect). Recently, to enhance water evaporation rates, water temperature and evaporation area
have been considered as essential ingredients, and thus photothermal materials and three-
dimensional hierarchical structures have been developed to promote light-to-heat conversion
efficiency and enhance interfacial evaporation. However, less attention has been paid to the airflow
effect, because the interfacial floatability of photothermal membranes should be considered under air
blast. Here, inspired from the stable interfacial floatability of lotus leaves, we report the airflow
enhanced solar interfacial evaporation approach using a graphene-based Janus membrane. Laser-
induced graphene (LIG) film was treated unilaterally by O2 plasma, forming a LIG/oxidized LIG
(LIG-O) Janus membrane with distinct wettability on two sides. Higher water evaporation rate of
1.512 kg m−2 h−1 is achieved. The high solar interfacial evaporation performance can be attributed to
the two advantages: (i) the combination of microscale capillary water transporting and nanoscale light trapping; (ii) hydrophobic/
hydrophilic Janus membrane for stable interfacial floatability under airflow. Our approach is feasible for developing high-performance
solar interfacial evaporation devices for practical clean energy utilization.
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1. INTRODUCTION

As a versatile energy conversion protocol, solar interfacial
evaporation has attracted significant interest in water treatment
and power generation (e.g., hydro voltaic effect).1−5 In a
typical solar interfacial evaporation process, an absorber
converts solar radiation energy into heat effectively.6−8

Meanwhile, certain heat locations can vaporize water and
allow the as-generated vapor to escape.9,10 Initially, various
photothermal materials with high light-to-heat conversion
efficiencies have been developed for solar interfacial evapo-
ration, for instance plasmonic metal nanoparticles, semi-
conducting materials, and carbon materials.11−16 Subsequently,
to further promote the evaporation efficiency, three-dimen-
sional (3D) photothermal structures, such as rose-, cone-, and
cylindrical cup-shaped structures, have been fabricated,
demonstrating enhanced water evaporation rates because of
greater internal light reflection and improved transpiration
pathways.17−21 In most implementations, the photothermal
material is arranged to cover the entire surface of the water
vessel. For a lab-scale study, it seems that it is unnecessary to
control the wettability of the photothermal materials since it
cannot move laterally. Recently, to advance salt resistance for
desalination, multilayered hydrophobic/hydrophilic structures
have been fabricated by coating,22,23 filtration,24−26 electric
spinning,27,28 and freeze-drying technology.29−31 For example,
Darling et al. have reported highly-efficiency solar steam

generation based on novel Janus membranes or powerful
photothermal materials.32−34 Zhang et al. have creatively
demonstrated a double-layer flamed corn straw in a
significantly low cost for a solar-driven interfacial evaporator.35

Nowadays, to develop solar absorbers with higher evaporation
rate and salt resistant, efforts have been devoted to prepare
highly efficient photothermal materials that feature low cost,
broadband absorption, robustness, and superwettability.
Graphene is a versatile material that offers high photo-

thermal conversion efficiency, tunable wettability, mechanical
strength, and ease of functionalization.36−40 Recently, sig-
nificant efforts have been devoted to graphene-based solar
interfacial evaporation absorbers.41−45 For example, to
efficiently heat up a graphene absorber, Qu et al. successfully
developed graphene absorbers by combining the photo/
electro-to-heat effect of graphene for highly efficient solar
interfacial evaporation.46 Subsequently, to facilitate water
transportation to heat locations, vertically aligned graphene
sheet membranes have been fabricated via freeze-drying/
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thermal annealing or the injection control technique.47,48 More
importantly, to further enhance the optical absorption of
absorbers and expose large areas for vapor dissipation, Zhu et
al. successfully achieved 3D graphene oxide (GO) based
artificial cone absorbers that can receive wide-ranged incident
light.49−51 Hu et al. creatively reported jellyfish-like GO pillar
evaporators via a vertical 3D printing technique.52,53 In fact,
the rate of solar interfacial evaporation depends significantly on
water temperature, water evaporation area, and air flow
rate.9,54−57 Currently, the aforementioned excellent works
focused on solar interfacial evaporation enhancement by
increasing water temperature and evaporation area. However,
the influence of air flow rate has been rarely considered in solar
interfacial evaporation enhancement. This negligence may be
attributed to the interfacial floatability problem of absorber
membranes under air blast. From the practical point of view,
stable floatability is quite important because there are always
big waves and winds in the sea. Especially, for large-area
seawater evaporation, a large number of photothermal films
would be employed, and the situation would become more
obvious.
In this study, inspired by the lotus leaves that possess a

superhydrophobic/superhydrophilic integrated Janus wettabil-
ity, we designed and fabricated a Janus graphene membrane
with stable interfacial floatability for solar interfacial evapo-
ration enhancement. The Janus graphene membrane is
prepared by laser-induced graphene (LIG) and unilateral O2
plasma treatment. Taking advantage of the hydrophobic/
hydrophilic characteristics and unique materials properties, the
LIG and oxidized LIG (LIG-O) Janus membranes enable solar
interfacial evaporation by the combining microscale capillary

water transporting and nanoscale light trapping. Besides, owing
to the improved interfacial floatability, the Janus LIG/LIG-O
membranes exhibited antirotating and windproof abilities.
Subsequently, the Janus LIG/LIG-O membranes demonstra-
ted remarkably enhanced solar interfacial evaporation perform-
ance under airflow condition. Actually, our approach provides
the opportunity for developing solar interfacial evaporation
devices through new design principles. For instance, a swarm
of floating water evaporation devices, just like the lotus leaves,
can be fabricated for practical use on the sea. Moreover, in
addition to the stable floatability, the distinct wettability on the
two sides of the film is also beneficial for other important
issues, for instance, the salt resistance during the desalination
process. This study provides a state-of-the-art strategy to
construct cost-effective, mass-producible, and highly efficient
solar interfacial evaporation system toward clean energy
utilization.

2. EXPERIMENTAL SECTION
2.1. Preparation of LIG Membrane and LIG/LIG-O Mem-

brane. Laser (P = 1.35 W, DAJA Corporation) scribing on Kapton PI
(thickness: 25 μm) was performed prepare LIG. The thickness of LIG
membrane is ∼50 μm. After the laser scribing process, Janus graphene
membranes (LIG/LIG-O) were prepared by unilateral O2 plasma
treatment of LIG papers for 2 min.

2.2. Solar Evaporation Tests. Solar interfacial evaporation was
measured under 1 kW m−2. The LIG and LIG/LIG-O membranes
were cut into 1 cm × 1 cm for the solar evaporation test. An electronic
balance (LICHEN FA2204) was used to monitor the mass change.
An infrared thermometer (FLUKE VT04) was used to measure
surface temperatures. The solar thermal conversion efficiency (η) is
calculated according to the following equation: η = mhLV/qi, where m

Figure 1. Janus wettability and antirotating and windproof abilities of floating lotus leaves. (a) Optical image of floating lotus leaves. Water contact
angle (CA) images of (b) upper and (c) lower surfaces. (d) Antirotating ability. A floating lotus leaf remains as its initial state after the rocking of
the water surface. (e) The corresponding trajectory of the lotus leaf centers (the green point) during the antirotating test. (f) Schematics of the
windproof ability. (g) The corresponding trajectory of the lotus leaf peripheries (the green circle) during the windproof test. In panels e and g, the
blue circle is the edge of water and the purple circle is the edge of the container.
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is the evaporation rate, hLV is the total enthalpy of sensible heat and
phase change, and qi is the solar illumination energy.2,58,59

2.3. Characterization. The water-droplet CA were measured by
using a contact angle system (SDC-350, SIN DIN Corporation,
China). SEM images were obtained using JEOL JSM7500. Raman
spectroscopy was obtained using LabRAM HR Evolution. XPS was
collected by ESCALAB250 spectrometer. The absorption spectrum of
the LIG membrane was obtained using a spectrophotometer
(Shimadzu UV-3600).

3. RESULTS AND DISCUSSION
3.1. Stable Interfacial Floatability of Lotus Leaves.

Floating on the air−water interface, lotus leaves exhibit evolved
special Janus hydrophobic/hydrophilic wettability, which
prevents wetting and submersion (Figure 1a−c). To
investigate this phenomenon, we measured the water-droplet
contact angles (CAs) of the upper and lower surfaces (Figure
1b,c). The upper surface has a large water-droplet CA (∼161°)
and the lower surface has a small water-droplet CA (∼22°),
demonstrating the Janus wettability. Owing to the hydrophobic
air-retaining and hydrophilic water-attaching properties, lotus
leaves exhibit antirotating and windproof abilities (Figure 1d−

g).60 As shown in Figure 1d, a floating lotus leaf remained in its
initial state after the water surface rocked. The corresponding
trajectory of the lotus leaf centers (the green point) during the
windproof test is shown in the Figure 1e, and the estimated
rotational speed is 1.7 ± 0.2 r/s. The blue circle is the edge of
water, and the purple circle is the edge of the container. The
rocking lotus leaf can attach on the water surface when the
water surface is almost parallel to the wall of the container. In
addition, the Janus sheet not only exhibits antirotating ability,
but also windproof ability. As illustrated in Figure 1f, air flows
over the upper surface. Consequently, the floating lotus leaf
can be preserved after air blowing. Figure 1g depicts the
corresponding trajectory of the lotus leaf peripheries (the
green circle) during the windproof test, of which the average
velocity of the lotus leaf is 6.2 ± 0.3 cm/s. In particular, the
green circle overlaps the blue circle, which indicates the
excellent windproof ability.

3.2. Preparation of Janus Wettability of LIG/LIG-O
Membranes. Inspired by the lotus Janus wettability integrated
system, Janus graphene membranes were designed and
fabricated based on a hydrophobic LIG by combining both

Figure 2. Manufacturing and processing of Janus wettability of LIG/LIG-O membranes for solar interfacial evaporation. Schematics of (a) Janus
graphene membrane process and (b) the designed solar interfacial evaporation enhancement system by air flow. (c) Microscale schematic of the
capillary water transporting due to the hydrophobic/hydrophilic bilayer structure. (d) Nanoscale light trapping for the top LIG solar absorber. (e)
Water-droplet CA images of LIG and LIG-O. (f) Scanning electron microscopy (SEM) image of LIG. (g) Absorption spectrum of LIG.
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laser scribing technology and unilateral O2 plasma treatment
(Figure 2a). First, commercial polyimide (PI) films were
employed as the initial material and laser treatment (P = 1.35
W) was performed prepare structured and porous LIG in an
ambient atmosphere. After the laser scribing process, the
yellow PI became black LIG (Figure S1) and the black LIG
indicated strong light absorption capabilities. The conversion
efficiency of laser-induced graphene is ∼6.9%. Utilizing the
programmable direct laser writing technology, a complex
patterned LIG can be easily laser-scribed, e.g., the school badge
of Jilin University. To investigate the quality of LIG, Raman
spectroscopy was performed. Three prominent peaks were
observed including D peak (∼1348 cm−1), G peak (∼1583
cm−1), and 2D peak (∼2703 cm−1; Figure S2). The 2D/G
intensity ratio was ∼0.76, which indicates the formation of few-
layered graphene.61 Recently, Gong et al. have comprehen-
sively summarized the preparation of graphene from polymer
(as carbon source) on Cu or Ni substrate under H2/Ar flow via
chemical vapor deposition method.63 In our work, LIG is
prepared by irradiation of laser on PI film under ambient
conditions, PI owns the repeat aromatic and imide repeat
units, which plays an important role in the fabrication of LIG.
The mechanism of fabrication LIG is because the aromatic
compounds rearrange to form graphitic structures after laser
treatment.61 The fabrication of the hydrophilic layer was aided
by O2 plasma treatment. After the O2 plasma treatment,
oxygen containing groups (OCGs) appeared on the LIG
nanosheets, resulting in high surface energy. Subsequently,
Janus LIG/LIG-O membranes were achieved by unilateral O2
plasma treatment of LIG membranes. Accordingly, the desired
shapes could be laser-cut for solar interfacial evaporation. It is
noteworthy that the entire fabrication process of the Janus
membrane does not require additional chemical treatments,
rendering it a safe and promising device for water purification.
To further evaluate changes in the functional groups of LIG

and LIG-O, X-ray photoelectron spectroscopy (XPS) was
performed (Figures S3 and S4). During laser scribing, the high
temperature could easily break the C−O, C−N, and CO
bonds, and the content of nitrogen is nearly less than 1%.43,61

After the O2 plasma treatment of LIG papers, the LIG-O

exhibited a higher oxygen content (∼19.5%), whereas the LIG
a lower oxygen content (∼9.56%). In addition, The C 1s XPS
spectra of our LIG and LIG-O samples were deconvoluted into
three peaks centered at 284.7 (C−C), 286.2 (C−O), and
288.9 eV (CO; Figure S5).64 LIG-O exhibited more C−O
(∼34.4%) and CO (∼11.4%) bonds compared with the LIG
(C−O, ∼21.2%; CO, ∼4.1%). Consequently, owing to the
more oxygen containing groups, the LIG-O became more
hydrophilic. It is known that graphene owns high thermal
conductivity (∼5000 W m−1 K−1),65,66 whereas existing of
OCGs on graphene nanosheets would cause a much lower
thermal conductivity (∼0.2 W m−1 K−1), which is beneficial for
suppressing the thermal loss down bulk water.50,67

The Janus LIG/LIG-O membrane can improve the
interfacial floatability. As shown in Figure 2b, the Janus
graphene membrane possesses antirotating and windproof
abilities and can enhance solar interfacial evaporation by air
flow. First, owing to hydrophilicity, bulk water can be supplied
through micro channels to the interface between the LIG and
LIG-O by capillary force (Figure 2c).48,68,69 Consequently, the
hydrophilic solar interfacial evaporation membrane would
transport more water. Therefore, the hydrophobic LIG layer
with porous structures contributes significantly to vapor escape
and light absorption. In fact, nanoscale structures can trap
light, which is significant for light absorption enhancement
(Figure 2d).70,71 In addition, graphene might convert sunlight
into heat by electron−hole generation/relaxation or thermal
vibration of molecules.5,9,72,73 To further confirm the
wettability difference, we tested the static CAs of the LIG
and LIG-O surfaces (Figure 2e). The LIG surface indicated
hydrophobicity (static CA ≈ 121°), which was attributed to
the low surface energy of the carbon materials (Figures S3−
S5) and the microstructures (Figure 2f). Meanwhile, owing to
numerous OCGs on the LIG, LIG-O exhibited super-
hydrophobicity (static CA ≈ 0°). The morphology of LIG
surfaces is rough at the nanoscale and reveals porous structures
due to the rapid liberation of gaseous products (Figure 2f). It is
noteworthy that the microstructure of photothermal materials
indeed influence the performance of solar vapor generation.62

The morphology and microstructure of LIG can be controlled

Figure 3. Antirotating and windproof abilities of the Janus LIG/LIG-O membrane. (a and b) Schematic illustration and contact interface between a
LIG/LIG-O membrane and water. (c) The Janus LIG/LIG-O membrane remains as its initial state and does not flip over after the rocking of the
water surface. (d) Schematics of the windproof ability. (e) The LIG/LIG-O membranes were preserved after wind blowing owing to the Janus
wettability of the LIG/LIG-O membrane.
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by the laser processing parameters. The LIG exhibited a small
reflectance (∼9.5%) and negligible transmittance (∼0%) in the
range from 300 to 2000 nm (Figures S6 and S7), indicating a
solar absorption of 90.5% (Figure 2g).
3.3. Antirotating and Windproof Abilities. To inves-

tigate the adhesive interaction between the LIG and LIG-O
with water, we performed static and dynamic wetting
characterizations. First, the Janus LIG/LIG-O membrane was
cut into 5 mm × 10 mm and fixed on a stick. Next, the Janus
LIG/LIG-O membrane was plunged into an air−water
interface (Figure 3a). Interestingly, the upper hydrophobic
LIG surface could prevent water wetting, which resulted in
buoyancy and air trapping. In contrast with the hydrophobic
LIG surface, the hydrophilic LIG-O surface demonstrated
remarkable water adhesion. Meanwhile, the liquid bridge was
formatted between the LIG-O surface and water when the
LIG-O surface was withdrawn from the water surface (Figure
3b).
The floating Janus membrane was systematically tested to

reveal its antirotating and windproof abilities. As shown in
Figure 3c, a pentastar-shaped LIG/LIG-O membrane was
distributed on the air−water interface. The LIG/LIG-O
membrane remained in its initial state and did not flip over
after the water surface rocked. As illustrated in Figure 3d,
artificial wind was employed on the water surface. The LIG/
LIG-O membranes adhered tightly to the water surface.
Furthermore, owing to the Janus wettability of the LIG/LIG-O
membrane, the membrane was preserved successfully after the
wind blowing (Figure 3e).
3.4. Solar Interfacial Evaporation Performance.

Hence, the Janus LIG/LIG-O membrane proved to be useful
in solar interfacial evaporation enhancement. To characterize
solar interfacial evaporation performances, the temperature
change of the LIG and LIG/LIG-O membrane under

simulated solar light (1 kW m−2) was measured. Initially, the
LIG and LIG/LIG-O membrane exhibited the ambient
temperature (∼16 °C). Based on our measurements, the
surface temperature of the LIG could reash 30.4 °C, whereas
the surface temperature of the LIG-O (29.4 °C) is lower than
that of the LIG because water evaporation cooled the surface
of the LIG/LIG-O (Figure 4a). In addition, mass changes were
measured to study the evaporation rate. The evaporation rate
of water, LIG (v = 0 m/s), LIG/LIG-O (v = 0 m/s), and LIG/
LIG-O (v = 0.5 m/s) in the dark is 0.089, 0.165, 0.188, and
0.317 kg m−2 h−1, respectively. As shown in Figure 4b, results
indicated that the water evaporation rate of the LIG and LIG/
LIG-O membrane could reach 1.095 and 1.191 kg m−2 h−1.
The solar thermal conversion efficiency (η) of LIG and LIG/
LIG-O membrane is 70.46% and 76.5%, which is one of the
best results among double layered graphene evapora-
tors.19,36,41,53,54 This superior performance in solar interfacial
evaporation primarily is mainly attributed to the high solar
absorption and Janus wettability. Importantly, as shown in the
Figure 4c, the water evaporation rate of the LIG/LIG-O
membrane could be improved to 1.512 kg m−2 h−1 under air
blowing (v = 0.5 m/s). Airflow took evaporated water
molecules away and reduced the relative humidity around
the evaporation surface leading to the water evaporation rate
improvement (Figure 4d,e). In addition, the parasitic
evaporation from container sides is analyzed. The radius of
cylinder container used in solar evaporation tests is 1 cm. The
area of the water evaporation is about ∼3.14 cm2. The net
water evaporation rate is 0.384 kg m−2 h−1. As for the LIG/
LIG-O membrane (v = 0.5 m/s), the area of the membrane is 1
cm2. Therefore, the parasitic evaporation from container sides
is ∼0.103 g h−1. The net water evaporation rate of LIG/LIG-O
membranes (v = 0.5 m/s, 1.512 kg m−2 h−1 cm−2) has
considered the parasitic evaporation from container sides. In

Figure 4. Solar interfacial evaporation performance under a solar irradiation of 1 kW m−2. (a) Temperature vs time of the LIG membrane surface
and Janus LIG/LIG-O membrane of upper LIG side. (b) Time-dependent mass change of water using LIG membrane and Janus LIG/LIG-O
membrane. (c) Time-dependent mass change of water using Janus LIG/LIG-O membrane under airflow (v = 0 and 0.5 m/s). COMSOL
simulation of relative humidity (RH) distribution around the evaporation surface (d) without airflow and (e) under airflow (v = 0.5 m/s).
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this study, we focused on the air flow approach to achieve
highly efficient solar evaporation, and the Janus LIG/LIG-O
membrane is a proof of concept for solar evaporation.
Therefore, among the graphene-based multilayered structures
for solar interfacial evaporation, we achieved a higher
evaporation rate in this study because the previous reports
did not include air flow. This may be attributed to the air
flowing enhancement approach and the combination of
microscale capillary water transporting and nanoscale light
trapping.
Additionally, Figure 5a,b shows that the water evaporation

rate and wettability of LIG/LIG-O membrane underwent 10
cycles without noticeable decrease, which might be caused by
the single-material-based membrane. The target application of
our Janus photothermal membrane is seawater desalination. To
evalue the desalination ability of the LIG/LIG-O membrane,
seawater containing Na+, K+, Mg2+, and Ca2+ was used. Figure
S8 is the schematic illustration of the device for water liquid
production. As shown in Figure 5c,d, the concentration of
these ions would decrease by 3−4 orders of magnitude with
ion rejection nearly 100% after the desalination.

4. CONCLUSIONS

In conclusion, we developed a hydrophobic/hydrophilic solar
interfacial evaporation membrane by designing and fabricating

a LIG/LIG-O based membrane. Benefiting from the Janus
wettability, the LIG/LIG-O membrane demonstrates inter-
facial floatability improvement and hence antirotating and
windproof abilities. More importantly, chemical-free proce-
dures and a water evaporation rate of 1.512 kg m−2 h−1 were
demonstrated by air flowing enhancement under 1 kW m−2. In
addition, our proposed method is simple and does not require
complicated chemical processes. The membrane demonstrated
excellent stability because the entire membrane was fabricated
based on a single LIG membrane, and the evaporation
efficiently removed heat to avoid thermal loss. The high-water
evaporation rate of LIG rendered it a promising material for
water purification and seawater desalination.
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