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Summary Graphene microcircuits have been successfully created on graphene oxide films
via direct femtosecond laser reduction process according to preprogrammed patterns. Atomic
force microscopy (AFM) characterization shows that surface height of the micropatterns was
lower than the rest of the film due to the loss of oxygen confirmed by XPS and XRD techniques.
Microcircuit;
Patterning

The electric resistivity and conductivity of as-reduced graphene have strong dependences on
output power of femtosecond laser. Moreover, current—voltage curves of graphene microcircuits
show typical linear relationship, indicating the stable conductivities. The micro-nanoprocessing
of graphene through femtosecond laser technologies might open the door for applications of
graphene-based materials in electronic microdevices.
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Introduction

In recent years, interests in graphene-based materials are
exploding due to their unique properties [1—7]. Espe-

cially, for electrical applications, two-dimensional graphene
sheets demonstrate great potential for future use in
microdevices [8—10]. Generally, graphene sheets synthe-
sized through chemical-oxidative exfoliation of graphite
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served.

ere of benefit to solution-processing compatibility, which
mparts tractable nature to graphene for further appli-
ations [11]. However, the oxygen-containing graphene
uffers from poor electric conductivities due to the pres-
nce of abundant defects, which significantly hinders its
lectrical applications, and therefore, post-reduction was
ssential [12—14]. On the other hand, the use of graphene
n electronic microdevices requires refined control of vari-

us complex patterns of integrated circuits [15,16]. Novel
ransfer printing methods were developed for fabricating
raphene patterns by employing elastomeric stamps [17,18].
hadow mask was used for patterning solution-processed
raphene oxide (GO) films through etching or reducing the
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xposed part of the GO films [19,20]. In addition, patterned
raphene was also prepared by a successful epitaxial growth
n a pre-patterned substrate [21,22]. However, it is still dif-
cult to fabricate complex patterns with higher resolution
nd smaller size on graphene films. The lack of micro-
anoprocessing technologies for fabricating graphene into
omplex patterns constitutes the main trammel of its appli-
ations in electronic microdevices. Therefore, it would be
f interest to develop new method for patterning and reduc-
ion of solution-processed graphene oxides through a simple
rocess.

It is worth noting that femtosecond (FS) laser has
een widely used for producing micrometresized feature
nd three-dimensional (3D) microdevices due to its advan-
ages of nanometre spatial resolution and 3D prototyping
apability since 1994 [23,24]. Afterward, the resolution
f microdevices or micropatterns has been significantly
mproved [25]. In this work, FS laser was used to fabricate
raphene microcircuits by direct reduction and patterning
f GO films. Various complex patterns were successfully cre-
ted through this simple FS laser nanowriting pathway. The
atterned graphene was synchronously reduced and thus
epresent well conductivity for electrical applications.

xperimental

ethod

raphene oxide was prepared from purified natural graphite

Aldrich, <150 �m) by Hummers method [11]. The as-
ynthesized graphene oxide was dispersed into individual
heets in distilled water at a concentration of 3 mg/ml with
he aid of ultrasound. Glass wafer was cleaned by ethanol
ith the aid of ultrasound and dried in vacuum before use.
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igure 1 Preparative scheme and optical microscopy images of r
rocedure of GO microcircuit; optical microscopy images of a curvi
d) MC-3, and (e) the badge of Jilin University. Scale bars, 10 �m.
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old electrodes were coated onto the glass wafer under vac-
um through a shadow mask. Then above GO solution was
pun coated at 1000 rpm on the glass wafer, dried at 95 ◦C
nd repeated for 10 times. The as-prepared GO film was used
or further processing by femtosecond laser. A femtosecond
aser pulse of 790 nm central wavelength, 120 fs pulse width,
0 MHz repetition rate was focused by a ×100 objective lens
ith a high numerical aperture (NA = 1.4) into the GO film.
00 �s exposure duration of each voxel and 100 nm scan-
ing step length were adopted. Then the femtosecond laser
irectly wrote on the GO film according to preprogrammed
atterns.

haracterization

he femtosecond laser was generated by Tsunami, Spectra-
hysics lasers (model: 3960-X1BB s/n 2617; ccd: AMSTAR,
/W; video ccd: CAMERA). Powder X-ray diffraction (XRD)
ata were collected on a Rigaku D/MAX 2550 diffractome-
er with Cu K� radiation (� = 1.5418 Å). X-ray photoelectron
pectroscopy (XPS) was performed using an ESCALAB 250
pectrometer. Spectra were baseline corrected using the
nstrument software. Raman spectra were obtained with

Renishaw Raman system model 1000 spectrometer. The
14.5 nm radiation from a 20 mW air-cooled argon-ion laser
as used as the exciting source. Atomic force micrographs

AFM) were obtained using a NanoWizard II BioAFM (JPK
nstrument AG, Berlin, Germany) in the tapping mode. SEM
xperiments were performed on a JEOL JSM-7500F scan-

ing electron microscope (5.0 kV). Current—voltage curves
f graphene microcircuits were measured from a Keithley
CS 4200 semiconductor characterization system. Optical
icrographs were obtained from a Motic BA400 microscope

nd the charge coupled device (ccd) of the laser.

educed and patterned GO films. (a) Illustration of preparative
linear microcircuit (b) MC-1, (c) MC-2, comb-like microcircuit
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Results and discussion

Fig. 1a shows the preparative procedures of graphene micro-
circuits. Firstly, gold electrodes were thermally evaporated
onto a glass wafer under vacuum through a shadow mask.
Then GO solution (3 mg/ml) was spun at 1000 rpm on the
electrodes coated glass wafer. Subsequently, the GO film
was reduced and imprinted according to preprogrammed
patterns via direct FS laser nanowriting. As observed in
Fig. 1b—d, two curvilinear microcircuits (MC-1, MC-2) and
a comb-like microcircuit (MC-3) with high resolution were
successfully created. The patterns could be clearly identi-
fied from optical microscopy images due to the difference in

transparencies. The patterning process of MC-1 was in situ
recorded by a CCD recorder (Supplementary Information,
Video S1). It is of interest to note that complex patterns
such as the badge of Jilin University could also be eas-
ily imprinted through this micro-nanoprocessing technology
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Figure 2 AFM characterizations of reduced and patterned GO film
profile along the white line (L1), inset is the optical micrograph of t
of a) and height profile along the white line (L2); (c) 3D image of (
FS laser reduction; (e) AFM image of comb-like microcircuit (MC-2) a
micrograph of the MC-2; (e) magnified image of the local pattern (bl
3D image of (e).
tosecond laser reduction 17

Fig. 1e), indicating that any desired patterns could be
irectly created. SEM images of two typical patterns were
hown in supplementary information (Fig. S1). The pat-
erns of MC-2 and MC-3 could be clearly identified from the
mages.

In order to investigate the surface property of the
educed and patterned GO (RP-GO) films, we carefully char-
cterized MC-2 and MC-3 microcircuits by AFM technique.
FM image shows that the thickness of as-synthesized GO
lm is about 55 nm (Fig. S2). After reduction and patterning
y FS laser, patterns with sunken surfaces could be clearly
dentified from the AFM images (Fig. 2a and e). Height pro-
le along the white line (L1, L3) shows a periodic change
n surface height, indicating the smooth interface and the
igh resolution of the patterns. Locally magnified images
ive much clearer observations of three sunken channels of
oth MC-3 and MC-2 microcircuits (Fig. 2b and f). Height
rofile along the white line (L2, MC-3) shows the liner width

s. (a) AFM image of comb-like microcircuit (MC-3) and height
he MC-3; (b) magnified image of the local pattern (blue square
b); (d) illustration for the profile of GO film before and after
nd height profile along the white line (L3), inset is the optical
ue square of d) and height profile along the white line (L4); (f)
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igure 3 (a) Survey X-ray photoelectron spectra of GO and R
PS spectra of GO and RP-GO; (c) XRD patterns of GO and reduc

f about 1.5 �m and the sunken depth of about 35 nm. Mag-
ified image of MC-2 pattern that was imprinted by single
aser focal spot (Fig. 2f, L4) shows a liner width of about
00 nm and a sunken depth of about 25 nm, giving the highest
esolution of the graphene patterns created by FS laser. 3D
ransformed AFM images of MC-3 and MC-2 patterns reveal a
isual observation of the microcircuits (Fig. 2c and g). Seem-
ngly, the laser irradiation induced surface sinking arose
ossibly from an effect called laser shock hardening, a pro-
ess used to strengthen metals and alloys, wherein a shock
ave induced by momentum transfer from photons to atoms
bsorbing them produces rebinding of atoms in the material.
typical criterion for the shock hardening is that a surface

aves in along the light propagation direction. Here, how-
ver, FS laser beam enters and interact with the GO film from
he substrate side. Therefore, the sink should be resulted
rom the mass loss from the GO films and as a result the
earrangement of atoms.

The nature of the mass loss is photochemical reduction.
s seen in the inset of Fig. 3a, RP-GO with 2 mm square
urned black from pristine deep-yellow after reduction and
atterning, which is generally observed during reduction of
O. X-ray photoelectron spectroscopy (XPS) studies show
oth GO and RP-GO have signals of carbon and oxygen
Fig. 3a). After reduction, O1s peak intensity of RP-GO is
ignificantly decreased compared with that of GO, demon-
trating the loss of oxygen. The C1s spectra of GO and RP-GO
ould be deconvoluted into three peaks that corresponding
o C—C, C—O and C O, respectively. Notably, the content of
arbon not bound to oxygen in GO is estimated to be about
4%, while RP-GO film shows much higher content (∼61%).

RD patterns (Fig. 3c) show that GO film typically gives
iffraction peak at 2� = 10.3◦ (d-spacing of 8.6 Å), indicating
he successful oxidation of raw graphite. After reduction and
atterning of GO film by FS laser, the typical diffraction peak
isappears, which could be related to the removal of oxygen

o
d
m
o
e

, inset is a photograph of a RP-GO square on a GO film; (b) C1s
d patterned GO (RP-GO); (d) Raman spectra of GO and RP-GO.

ontaining groups from the GO film, in good agreement with
he results of XPS. Raman spectra of GO films display two
road picks at 1354 and 1599 cm−1, corresponding to D and
band, respectively (Fig. 3d). The G band peak is attributed

o an E2g mode of graphite associated with the vibration
f sp2 bonded carbon atoms. The D band peak is related
o the vibrations of carbon atoms with dangling bonds in
lane terminations of disordered graphite. After reduction
nd patterning, D and G band peaks become sharp slightly.
n addition, there is no band shift in the Raman spectrum of
P-GO film. The D/G intensity ratio of RP-GO (ID/IG = 0.89) is
lightly larger than that of pristine GO (ID/IG = 0.83), which
an be explained as a decrease in the size of reduced and
atterned graphene domains [26].

To investigate the conductivity of RP-GO reduced by FS
aser of different output powers, a series of RP-GO micro-
elts were patterned. Fig. S3 shows the optical microscopy
mages of these RP-GO micro-belts between electrodes.
he length and width of these micro-belts could be mea-
ured from these micrographs. The areas of the section
ere estimated by AFM data shown in Fig. S4. After mea-

uring the resistances by a multimetre, the resistivities and
onductivities of these RP-GO micro-belts could be calcu-
ated according to the method shown in Scheme S1. Fig. 4a
hows the dependence of resistivity and conductivity of
hese RP-GO micro-belts on different output powers of FS
aser. Generally, the higher the laser power, the higher the
onductivity, and the lower the resistivity. In this work, RP-
O micro-belt reduced by FS laser with an output power of
.0 mW gives the highest conductivity of 2.56 × 104 S/m and
he lowest resistivity of 3.91 × 10−5 �m. A further increase

f the output power will partly ablate the thin GO film. The
etail parameter of resistivities and conductivities is sum-
arized in Table S1. Fig. 4b shows the current voltage curves

f MC-1 and MC-3 microcircuits. Both show approximate lin-
ar dependence between voltage and current, indicating the
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Figure 4 (a) Dependence of resistivity and conductivity of RP-
GO micro-belts on laser power; (b) current—voltage curves of
MC-1 and MC-3 microcircuits.

stable conductivity of the RP-GO microcircuits. In addition,
the resistances of MC-1 and MC-3 evaluated from the curves
were 7.8 and 2.1 M�, respectively.

Conclusions

In conclusion, we have successfully developed a novel
method to fabricate any desired micrometre sized graphene
circuits on GO films using FS laser nanowriting. Patterned
graphene microcircuits were directly reduced by FS laser,
and thus show significant improvement in conductivities. In
addition, the resistivities of these graphene microcircuits
can be easily adjusted in a certain range by altering the
output power of FS laser. The outstanding electrical, opti-
cal, chemical and physical properties have already enabled
graphene to possess promising applications, and this micro-
nanoprocessing method would make graphene even more
attractive when used as microdevices in a wide range of
scientific fields.
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