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Two-Photon Absorption and Spectral-Narrowed
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Abstract— This paper reports the two-photon absorption (TPA)
and the spectral-narrowed light emission (SNLE) from the
crystals of 9,10-distyrylanthracene (DSA) derivatives. The results
obtained by the Z-scan method show that the tested molecules
possess high TPA cross sections. Upon near-IR excitation, strong
two-photon-excited fluorescence could be observed in the crystals
of four types of materials. Furthermore, SNLE with low threshold
occurs in three of the four crystals under pumping with the
second harmonic generated in the amplifier. Single crystals of
the DSA derivatives exhibit unique photonic properties, including
strong solid-state fluorescence, large TPA cross section, and
stimulated emission. The results demonstrate that these are
potential candidates for compact and practical solid-state laser
applications.

Index Terms— Light source, organic crystal, spectral-
narrowed, two-photon absorption, upconversion.

I. INTRODUCTION

COMPACT upconversion lasers [1]–[3] have been
extensively studied because of their wide variety of

applications in the fields of high-density optical data stor-
age, lithography, and optical communication. As an effec-
tive route for realizing the upconverted lasing, two-photon
absorption (TPA) has attracted much attention in recent years
[4]–[12]. Unlike in second-harmonic generation (SHG), no
phase-matching condition is required in the TPA-induced
lasing process, rendering the implementation of upconverted
lasers with a variety of gain media and resonator configu-
rations. A large number of papers on two-photon [7], [13]–
[19], even three-photon [20], [21] or four-photon [22] pumped
lasing phenomena have been published, such as two-photon-
pumped lasing in a solution of stilbene-type chromophores
[14], substituted ( p-aminostyryl)-1-(3-sulfooxypropyl) pyri-
dinium inner salts [19], first-generation bisfluorene dendrimers
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[6], symmetrical fluorene derivatives [17], and hybrids of
inorganic polymers and organic chromophores [23]. Most
of the TPA-induced lasing is reported in solution, which is
not convenient for constructing a compact laser. Recently,
attention has been focused on crystalline materials owing to
their high purity, rigorously defined structure, and thermal
and photochemical stability, which make them promising
candidates for realizing compact solid-state lasers [24]–[29].
Moreover, organic crystal can have large TPA properties. Zhao
et al. [30] have reported two-photon-pumped spectroscopy
from Troger’s base crystal. Subsequently, two-photon-pumped
amplified spontaneous emissions (ASE) from organic crystals
have been observed by Sun’s group [31]–[35]. In addition,
Gao et al. also reported the strong two-photon-excited fluores-
cence and stimulated emission from an thiomethyl-terminated
oligo(phenylenevinylene) [36]. Nevertheless, reports on two-
photon-pumped lasing from organic crystals remain scarce,
when compared to those on amorphous materials, because
of the difficulty to obtain high-quality crystals. A number of
molecules with large TPA cross-section are very large in size,
such as dendrimers [36], [37], [37]–[39] and cyclic oligomers
[40], [41], which are not very suitable for crystal growth,
while materials that possess very efficient TPA properties and
can be used for crystal growth are small in number. Thus,
finding new high-quality materials is one of the urgent tasks to
be accomplished for realizing practical compact upconversion
lasers.

In this paper, we report the TPA properties and
their spectral-narrowed light emission (SNLE) from 9,10-
distyrylanthracene (DSA) and its derivatives, including 9,10-
bis(4-methoxystyryl)anthracene (BMOSA), 9,10-bis(4-butoxy
styryl)-anthracene (B-4-BOSA), and 9,10-bis(2-butoxystyryl)-
anthracene (B-2-BOSA) (their molecular structures are shown
in Fig. 1). Strong two-photon-excited fluorescence and SNLE
were observed from the crystals of the derivatives. Experimen-
tal results revealed that these compounds have the potential
applications for use in compact and practical solid-state laser.

II. EXPERIMENTAL

A. Materials, Linear Properties, and Time-Resolved
Emission

The synthesis of DSA derivatives has been described
elsewhere [42], while their structures and fluorescence pho-
tographs are shown in Fig. 1. Single crystals of all DSA
derivatives were prepared by slow evaporation from mixed
solvents of chloroform and ethanol at room temperature.

0018–9197/$26.00 © 2010 IEEE
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Fig. 1. (a) Chemical structures of DSA derivatives. Fluorescence photograph
under the microscope of the crystals for (b) DSA, (c) BMOSA, (d) B-4-BOSA,
and (e) B-2-BOSA.

Fluorescence microscopy measurements were performed using
an IBE2000 inverted fluorescent microscope. The absorption
spectra were measured by a Shimadzu UV-1700 spectropho-
tometer. The steady-state fluorescence spectra were obtained
with an AvaSpec 2048-UA-50-AF spectrometer. The photolu-
minescence (PL) efficiencies of crystals were recorded using
an integrating sphere. Time-resolved fluorescence measure-
ments were performed on the time-correlated single-photon
counting (TCSPC) system. The fluorescence signals were
collimated and focused onto the entrance slit of a monochro-
mator, with the output plane equipped with a photomultiplier
tube (Hamamat-suH5783p), which is connected to a board
(Becker & HickelSPC-130). A 405-nm picosecond diode laser
(Edinburgh Instruments EPL-405, repetition rate 10 MHz) was
used to excite the samples. The time constant of the instru-
ment response function (IRF) was about 220 ps. The time-
resolved fluorescence decay was measured near the emission
peak position. The fluorescence lifetime was fitted to single
exponential functions, and was convoluted with the system
response function by fixing the long lifetime obtained from
TCSPC measurement.

B. TPA Measurement

An open-aperture Z -scan system was used to measure the
nonlinear absorption cross section, where the transmittance
of the sample was monitored as it was scanned along the
beam axis through the focal region while the energy was held
constant. Through a lens ( f = 150 mm), the 4-mm diameter
pump beam was focused vertically onto the center of a
1-mm path quartz cell that was filled with the solution sample.
A regenerative amplifier (Spitfire, Spectra Physics) seeded
with a mode-locked Ti:sapphire laser (Tsunami, Spectra
Physics), which generated laser pulses of about 120 fs at the

(a)

(b)

DSA (Cry)

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

DSA (Solu)

DSA (Abs)

BMOSA (Cry)

BMOSA (Solu)

BMOSA (Abs)

300 400 500 600 700
Wavelength (nm)

800 900 1000

300 400 500 600 700
Wavelength (nm)

800 900 1000

B-2-BOSA (Cry)

B-2-BOSA (Solu)

B-2-BOSA (Abs)

B-4-BOSA (Cry)

B-4-BOSA (Solu)

B-4-BOSA (Abs)

Fig. 2. (a) UV-vis absorption spectra of DSA (�) and BMOSA (�) in tol-
uene, and the normalized emission spectra of DSA in toluene solution (•) and
crystal (�) BMOSA in solution (�) and crystal (�). (b) UV-vis absorption
spectra of B-2-BOSA (�) and B-4-BOSA (�) in toluene, and the normalized
emission spectra of B-2-BOSA in toluene solution (•) and crystal (�) and
B-4-BOSA in solution (�) and crystal (�).

wavelength of 800 nm, was used as an excitation source.
A toluene solution with around 10−3 mol/l was used in
the experiment. The Z -scan traces with open aperture were
symmetric with respect to the focus (Z = 0). Subsequently,
the TPA coefficient (β) was determined from the transmittance
curves by fitting the experimental results with a self-compiled
program.

The TPA-induced upconversion fluorescence spectra of
the crystals were investigated by a Spectra-Physics Tsunami
Mode-locked Ti:sapphire laser with 82-MHz repetition rate
as pump source and an Avantes fiber optic spectroscope as
recorder. Before entry into the slit of the spectrometer, the
scattered pump light was filtered by a dichroic mirror (DIM
50S-RED).

C. SNLE

The single crystals were optically pumped by the SHG
from the Ti:sapphire regenerative amplifier. The crystals
were glued onto a quartz substrate and the excitation beam
was directed onto the crystal with focusing normally to the
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Fig. 3. Fluorescence decay in crystal and solution for the BMOSA measured
by TCSPC.

TABLE I

LIFETIME OF THE DSA DERIVATIVES IN TOLUENE SOLUTION

AND CRYSTALLINE STATE

Molecule Detected Lifetime (ns)
Wavelength (nm)

DSA Solution 580 4.6
Crystal 575 5.2

BMOSA Solution 620 2.4
Crystal 526 1.5

B-2-BOSA Solution 450 3.2
620 3.0

Crystal 500 1.1
B-4-BOSA Solution 475 1.1

600 2.2
Crystal 515 2.2

substrate. The near-Gaussian beam diameter of the pump laser
was 4 mm and the excitation area of the crystals was adjusted
by the slit. Emitted light from the crystals was collected with
a lens and then collimated and focused into the entrance
slit of a 300-mm monochromator/spectograph (SR-3031-A,
Andor). The spectrogram of the emission was recorded using
a charge coupled device (iDus, Andor). The intensity of the
pump beam was controlled by neutral density filters.

III. RESULTS AND DISCUSSION

A. Linear Photophysical Properties and Excited-State Lifetime

Fig. 2 shows the steady-state absorbance and emission
spectra of the DSA derivatives in toluene solution and in
the crystalline state. The absorption bands located 415 nm
in all the four chromophores can be attributed to the π −π∗
transition [42], while the bands near the 300 nm can be at-
tributed to the phenyl group. However, this is strongly affected
by the substitutional group and its positions, especially in
B-4-BOSA. Because of the different substitutional groups, the
absorption near 300 nm increases from DSA to B-4-BOSA.
The substituent positions may also play a role. The absorption
of the B-2-BOSA near 300 nm is much lower than that of
B-4-BOSA. The substituents in the ortho and para positions
lead to different conjugates of the molecules, which results in
different absorption spectra [43]. For the emission, all of them
exhibit a broad orange emission in toluene solution, while it
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Fig. 4. Normalized open-aperture Z -scan transmittance of the four com-
pounds in toluene solution at 800 nm.

was relatively narrow and blue-shifted in crystals. As shown in
Fig. 1, the emission was yellow-green in the crystals of DSA,
green in the BMOSA and B-4-BOSA, and more blue-shifted
in B-2-BOSA under the fluorescence microscope, which is
believed to be due to the strongly distorted conformation of the
molecules in the crystal. All four molecules have a nonplanar
conformation in crystals, which can be attributed to the CH/π
hydrogen bonds leading to relatively tight packing and rigid
molecules [44], [45]. The large torsion angle of the molecules
in the crystal may also be the reason for the high absolute
quantum yield of 50.8% for DSA, and 40.5, 31.2, and 18.7%
for BMOSA, B-4-BOSA, and B-2-BOSA, respectively, which
are higher than those of the most reported fluorescent organic
crystals.

To gain insight into the nature of the excited state of the
DSA derivatives, fluorescence lifetimes were measured in the
solution and solid state. Fig. 3 shows the fluorescence decay
in the solution and the crystalline state for the BMOSA
(the results for the other materials are listed in Table I).
The measured lifetimes for the DSA derivatives in the toluene
solution were all in the order of several nanoseconds. In the
crystalline state, it was noted that the lifetime for DSA was
the longest, about 5.2 ns, while it was only 1–2 ns for the
other materials.

B. TPA Properties

TPA cross sections of the compounds were measured by
Z -scan using a Ti:sapphire laser as the excitation source
(at 800 nm). For the measurement, low-frequency (1 kHz)
femtosecond laser pulses were used and, consequently, the
contribution from the excited-state absorption was eliminated
totally, and the nonlinear transmission was mainly induced
by TPA of the sample molecules. Fig. 4 shows a typical
Z -scan trace for the four materials dissolved in toluene. The
sharp dip of the trace is an evident sign for the nonlinear
absorption, which is due to two-photon resonance. This pro-
cedure generates an absorption signature, and the magnitude of
the TPA process can be extracted from it. The open-aperture
Z -scan transmittance change can be found by recording the
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Fig. 5. Fluorescence spectra of B-2-BOSA crystal excited by a single photon
and two photons. Inset: Photograph of the B-2-BOSA crystal pumped by
800 nm.

transmitted power to give the normalized energy transmittance,
assuming a Gaussian pulse [46].

T = 1√
xq0(z, 0)

∫ +∞

−∞
ln

[
1 + q0(z, 0)e−τ 2

]
dτ (1)

where

q0(z, 0) = β I0(t)L

(
1 + z2

z2
0

)−1

(2)

and L is the sample thickness, z0 is the Rayleigh length,
z is the sample position, and I0 is the pulse irradiance.
The macroscopic TPA coefficients β (in units of cm/GM)
were measured at several different values of laser irradiance.
Subsequently, it was evaluated from a fit of the experimental
trace according to the equation mentioned earlier. By knowing
the β value, the TPA cross section for a given molecule was
determined by the following relationship [47]:

σ = hνβ

N Ad0 × 10−3 (3)

where σ is the molecular TPA cross section in units of
cm4/(photon/s), NA is Avogadro’s number, and d0 is the molar
concentration of the absorbing molecules in units of M, and hν
is the photon energy of the input light beam. In the experiment,
all the DSA derivatives showed effective TPA properties. The
calculated TPA cross section for DSA was about 95 GM, and
for BOMSA, B-2-BOSA, and B-4-BOSA it was 88, 143, and
112 GM, respectively.

The studied crystals in this paper showed strong TPA-
induced fluorescence emission. Fig. 5 depicts the measured
one- and two-photon-excited fluorescence spectra of the
B-2-BOSA crystal. The fluorescence spectral shape remained
the same as that obtained by the one-photon absorption, that
is, the same emission processes from the one- and two-photon-
excited states to the ground state are involved. As further
evidence, the two-photon-excited fluorescence intensity as a
function of the incident energy is in good agreement with
the best fitting curve following the square dependence, which
implies that the upconverted emission indeed stems from the
TPA processes. Under TP excitation at 800 nm, the crystals
strongly emitted broadband fluorescence (as shown in the
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Fig. 6. (a) Light-emission spectra of BMOSA crystals at different intensities
of the incident laser light. (b) FWHM and PL peak intensity of light emission
of a BMOSA single crystal as a function of the incident laser energy.

inset of Fig. 5), implying great potential for upconversion
applications.

C. SNLE

Under the ultraviolet excitation, the light emitted from
the edges of all the tested crystals was much stronger than
that from the body surface, indicating that self-waveguide
emission occurs in the crystals. Waveguide propagation of
the emission is thought to be a prerequisite for lasing. In
the spectral-narrowed emission experiment, the crystals were
placed on quartz substrates. First, we examined the emission
characteristics of the crystals of BMOSA. Fig. 6(a) shows
the emission spectra of a crystal of BMOSA detected from
the edge at several different pump energy densities. At the
pump energy of 2 µJ per pulse, the PL, which consisted of
a broad band, reflected the nature of spontaneous emission.
As the excitation density increased, the spectroscopic profiles
changed dramatically. At pump energies between 10 and 17 µJ
per pulse, the broad PL band at 532 nm progressively gain-
narrowed from about 100 nm down to 16 nm full-width-at-
half-maximum (FWHM). The obvious change in the spectra
at high excitation intensity suggests that the PL confined in the
single crystal is under resonance and gives out the stimulated
emission. It is important to note that the existence of gain
results in not only a narrowing of the emission spectra at
certain pump intensity but also a considerable increase in the
output intensity. This is illustrated in Fig. 6(b), where the
output intensity at the maximum wavelength of the emission
spectrum has been represented as a function of pump intensity
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Fig. 7. Normalized ASE spectra for the crystals of BMOSA, B-2-BOSA,
and B-4-BOSA.

for BMOSA crystal. As observed, the intensity grows linearly
with the pump intensity, and shows a clear collapse at higher
pump power densities into a single emission peak, which
coincides with the 0–1 transition of the fluorescence spectrum.
This has been generally found in the case of SNLE, and can
be interpreted in terms of a four-level laser system, where
the maximum gain can be expected from the 0–1 vibronic
transition. Similarly, the B-2-BOSA and B-4-BOSA exhibited
pronounced SNLEs centered at 501 and 526 nm with a low
threshold of 12.8 and 1.0 µJ per pulse, respectively (Fig. 7).
However, we did not observe the SNLE in the DSA crystals,
although they exhibited high quantum efficiency. The under-
lying reason may be related to the material’s photophysical
properties. The stimulated emission cross section is essential
for the expected performance, because it determines the rela-
tionship between the gain and the energy stored, while it is
inversely proportional to fluorescent lifetime and fluorescent
line width [48]. As mentioned earlier, the lifetime in the DSA
crystals is much longer than that of the others, and the FWHM
of the fluorescence of spontaneous emission is larger.

IV. CONCLUSION

In summary, the TPA properties and SNLE of a number of
small-molecule organic single crystals of symmetrical DSA
derivatives were comprehensively examined. The TPA cross
sections were obtained by open-aperture Z -scan method. The
results showed that the derivatives exhibit large TPA, and
also strong two-photon-excited fluorescence in the crystals.
Moreover, SNLE from the crystals of DSA, B-2-BOSA, and
B-4-BOSA was observed. Considering their TPA cross sec-
tion and high crystalline-state PL, the novel DSA derivative
crystals are expected to be attractive for the implementation
of alternative optical pumping schemes toward compact and
practical solid-state laser applications.
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