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Distinct outcomes by dynamically encircling an exceptional point along homotopic loops
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We study a two-state non-Hermitian waveguide system that carries an exceptional point (EP). It is commonly
believed that dynamically encircling an EP exhibits a chiral behavior when the starting point of the loop lies in
the branch cut with eigenmodes being symmetric and antisymmetric modes. We show here that such statement is
conditional; i.e., the dynamics can in fact be nonchiral for specially designed loops with the starting point in the
branch cut. In particular, we find that for two homotopic loops (i.e., loops that can be transformed continuously
from one to another without crossing any EP), the outcomes can be completely different even if the two loops
share the same starting state, enclose the same EP, and encircle the EP in the same direction. Our findings greatly
enrich the understanding of the physics in dynamical processes of EP encircling in non-Hermitian systems.
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I. INTRODUCTION

Non-Hermitian systems have degeneracies known as ex-
ceptional points (EPs) that exhibit interesting properties [1–3]
and lead to a variety of applications, such as loss induced
transmission enhancement [4], sensing with enhanced sen-
sitivity [5,6], lasing applications [7–9], asymmetric mode
switching [10,11], and others [12–16]. Consider a non-
Hermitian system working at its EP; any perturbation to the
system will destroy the EP. In particular, when one introduces
two perturbations in a parameter space, the eigenvalues of
the system around the EP form self-intersecting energy sheets
known as Riemann sheets [17]. The topological structure of
the energy sheets around the EP has attracted considerable
attention recently due to its extraordinary properties.

One of the interests related to the topological structure is
the stroboscopic encircling of the EP in which the process is
adiabatic [18–20]. An interesting phenomenon is that a state
does not return to itself after adiabatically looping the EP.
This phenomenon was demonstrated experimentally in some
two-state systems such as microwave systems [18], exciton-
polariton systems [19], and acoustic systems [20]. In a three-
state system that possesses a third-order EP, it was predicted
that a state will return to itself by looping the EP three
times [21]. Quite recently, some researchers studied multistate
systems and found unexpectedly that loops enclosing the same
EP, starting from the same initial state and encircling the EP in
the same direction, do not necessarily share the same end out-
come [22,23]. The researchers introduced the topological no-
tion of homotopy to explain the unexpected phenomenon [22].
We see that the study of stroboscopic encircling of the EP has
revealed some interesting physics in non-Hermitian systems.
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Another topic of current interest is the dynamical en-
circling of the EP, which not only can reveal alternative
physics of non-Hermitian systems but also can lead to some
fascinating applications unique to non-Hermitian systems
[10,11,24–34]. In contrast to the stroboscopic encircling of
the EP, the process of dynamical encircling was predicted to
exhibit more complex dynamics since adiabaticity may break
down because of the presence of non-Hermiticity [24,25].
Theories [26–28] and experiments [10,11] showed that dy-
namically encircling an EP exhibits chiral dynamics when
the starting point of the loop lies near the branch cut [or
parity-time (PT ) symmetric phase]. The chiral dynamics can
be applied for asymmetric mode switching [10,11]. Later,
the dynamics was found to depend on the starting point of
the loop; i.e., starting from the PT -broken phase can lead
to nonchiral dynamics [30]. It is in fact the location of
the starting point of the loop that determines the dynamics,
rather than the encircling of the EP. As such, the chiral-state
switching behavior was also found for loops excluding the
EP, as long as the starting point lies in the branch cut (or
PT -symmetric phase) and the loop is in the vicinity of the
EP [31]. The dynamical processes, especially the nonadiabatic
transitions which are keys to the chiral and nonchiral behavior,
have been investigated using different theoretical frameworks
[28,32]. There are also some investigations on the dynamical
encircling of the EP in more complex systems [33,34].

Although the dynamical encircling of the EP has been
studied extensively, the loops in most of the previous works
have regular shapes (e.g., elliptical loops). The study of the
stroboscopic encircling of homotopic loops has revealed some
unique physics, where the loops are not regular loops but have
unusual shapes [22,23]. This leads us to think that introducing
the concept of homotopy into dynamical encircling of the EP
may also lead to alternative physics and potential applications.
A natural question to ask is whether the shape of the loop
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can affect the dynamics in the EP encircling. One may also
be interested in whether the conclusion found in stroboscopic
encircling of the EP associated with homotopy is applicable
to the case of dynamical encircling.

In this work, we address the above questions by studying
a non-Hermitian system consisting of coupled waveguides.
The system possesses an EP and we design two loops that
are homotopic to study the dynamical encircling of the EP.
Each loop has a starting and end point near the branch cut,
and the dynamics would be chiral according to the conclusion
of previous studies [10,11,30]. However, we show that the
dynamics of each loop is nonchiral because of the specially
designed shape, which indicates that the shape of the loop can
also affect its dynamics. Moreover, we show that although
the two loops are homotopic, their outcomes are completely
different, indicating that the rules found in stroboscopic encir-
cling of the EP associated with homotopy are not applicable
to the case of dynamical encircling. We perform numerical
simulations to reveal the physics and derive a theory to explain
the unexpected phenomenon.

II. SYSTEM UNDER INVESTIGATION

We consider a non-Hermitian passive system consisting of
a lossy waveguide and a lossless waveguide [see Fig. 1(a)
for the cross section]. The waveguides are assumed to work
at the optical communication wavelength (∼1550 nm), and
the refractive indices of the lossy and lossless waveguides
are 3.48 + 0.1i and 3.48, respectively. The widths of them
are denoted by W1 and W2, and symbols H and g represent
the height of the waveguides and the gap distance within.
The substrate and the background are assumed to have the
refractive index of 1.44 and 1, respectively. In the potential
experiment, the lossless waveguide and the substrate can be
made of silicon and silica, respectively. The loss in the system
may be introduced by doping the waveguide with impurities.
In the following study, we fix W1 = 600 nm and H = 100 nm.
Using the above parameters, we applied COMSOL [35] to
calculate the effective mode index neff of the eigenmodes
supported in the waveguides system as a function of W2 and g.
Figures 1(b) and 1(c) plot the real part and imaginary part
of the eigenvalues, respectively. Under the system parame-
ters, each waveguide works at the single mode condition.
Therefore, the coupled system supports only two eigenmodes,
and we see two self-intersecting energy sheets also known
as Riemann sheets. There is an EP located at W2 = 591 nm
and g = 90 nm, at which the coupling between the two
waveguides is equal to their loss difference.

Figure 2(a) shows the parameter space where the EP is
marked by a red star. The red dashed curve represents the
branch cut which connects the adjacent Riemann sheets. It
also corresponds to the region where the imaginary parts of
the eigenvalues coalesce. We consider a specially designed
loop 1 which is parametrized by
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FIG. 1. (a) Cross-sectional view of a non-Hermitian system con-
sisting of coupled waveguides, where the left waveguide is lossy
and the right one is lossless. (b), (c) Calculated (b) real part and (c)
imaginary part of the effective mode index of the system as a function
of W2 and g at 1550 nm. The structural parameters are W1 = 600 nm
and H = 100 nm.
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when 2L/3 � z � L, where L denotes the length of the sys-
tem, z is ranging from 0 to L, and σ = 1. The unit of W2 and
g in the above formula is in nanometers.

Although loop 1 encloses the EP, it is different from the
regular loops studied in previous works since it has a “tail”
on the right-hand side of the EP. We also consider in Fig. 2(b)
a loop 2 which also encircles the EP but with a tail on the
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FIG. 2. (a), (b) Parameter space of the non-Hermitian system possessing an EP. (a) Loop 1 and (b) loop 2 that encircles the EP with a
starting and end point (see the circle) close to the branch cut (see the red dashed curve). (c) The variation of W2 and g along z-axis for loop 1
and loop 2. (d) Top view of the waveguides system in which the wave transmission through it is equivalent to the evolution in the parameter
space following loop 1.

left-hand side of the EP. Loop 2 can also be generated by
Eqs. (1) and (2) except that σ = −1. The starting point of
the two loops lies at W2 = 600 nm and g = 20 nm [see the
circle in Figs. 2(a) and 2(b)], which is very close to the
branch cut where the two eigenmodes share the same loss.
At the starting point, one of the eigenmodes is a symmetric
mode while the other one is an antisymmetric mode, with
the energy almost evenly distributed in the two waveguides.
Figure 2(c) shows the variations of W2 and g as a function of z
for the two loops. Taking loop 1 for example, the schematic
diagram of the waveguide system is drawn in Fig. 2(d),
where the wave transmission through the system is equiva-
lent to the dynamical encircling of the EP in the parameter
space following the designed loop 1. Wave propagations from
the left-hand side to the right-hand side follow a counterclock-
wise loop while those from the right-hand side to the left-hand
side travel in a clockwise loop.

In the following sections, we will use loop 1 and loop
2 to reveal some interesting physics in the proposed non-
Hermitian system.

III. NONCHIRAL DYNAMICS OF
SPECIALLY DESIGNED LOOPS

We study the dynamics of loop 1 in this section. Previous
studies on non-Hermitian systems showed that when the
starting point of a loop that encloses an EP lies near the
branch cut (or PT -symmetric phase), dynamically encircling
the EP exhibits a chiral transmission behavior in the sense that
counterclockwise and clockwise loops result in different final
states [10,11,28]. The loop 1 here obviously satisfies the above
conditions, but we will show that the dynamics of loop 1 is
nonchiral because of the existence of its tail.

We calculated the wave transmissions in the proposed
system with L = 90 μm and show the x-component electric
field distributions in Figs. 3(a)–3(d). Figures 3(a) and 3(b)
show the results for counterclockwise loops with a symmetric
and antisymmetric mode as the input, respectively, while
Figs. 3(c) and 3(d) plot the results for clockwise loops. Since
the power flow decays along the waveguiding direction, the
field profiles are normalized at each cross section for better
readability. We find that for all four cases, the output state
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FIG. 3. (a), (b) Numerically simulated x-component electric field distributions along the z axis for counterclockwise loop 1 with (a)
symmetric mode and (b) antisymmetric mode being the input eigenmode. (c), (d) Items shown are the same as those in (a), (b) except for
clockwise loop 1. The output state is a symmetric mode for all four cases.
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FIG. 4. (a), (b) Calculated amplitudes of the instantaneous eigen-
modes along the waveguiding direction for counterclockwise loop
1 with (a) symmetric mode and (b) antisymmetric mode being the
input eigenmode. (c), (d) Items shown are the same as those in (a),
(b) except for clockwise loop 1.

is always a symmetric mode. This is the phenomenon of
nonchiral dynamics; i.e., the output state is independent of the
looping direction as well as the symmetry of the input mode.
To investigate why the proposed loop exhibits a nonchiral
behavior, we project the fields at each cross section (i.e.,
x − y plane) onto the instantaneous eigenfields and obtain the
amplitude coefficient of the two eigenmodes as a function of z.
Details of the method can be found in Ref. [34]. We use
cG and cP to represent, respectively, the amplitude coefficient
of the eigenmode on the green sheet and the pink sheet. The
results are shown in Figs. 4(a)–4(d) for different encircling
directions and different input states. These extracted ampli-
tude coefficients can also be used to draw the trajectory of the
eigenmode evolution on the energy sheets. Figures 5(a)–5(d)
plot the trajectories on the imaginary part of the Riemann
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FIG. 5. (a), (b) Trajectories of the state evolution on the imag-
inary part of the Riemann sheets for counterclockwise loop 1 with
(a) symmetric mode and (b) antisymmetric mode being the input
eigenmode. (c), (d) Items shown are the same as those in (a), (b)
except for clockwise loop 1.

sheets, where the trajectory is marked on the green (pink)
sheet when cG (cP) dominates the instantaneous state. We will
elucidate the complex dynamics in the encircling processes
based on the results in Figs. 3–5.

We first consider counterclockwise loops. When the input
eigenmode is a symmetric mode, as shown in Fig. 5(a), the
starting state lies on the green sheet. One important rule in
non-Hermitian systems is that the state is stable only when it
evolves on the Riemann sheet with the lowest loss (i.e., the
green sheet in our system) [26,27,30]. After encountering the
branch cut, the state climbs up to the pink sheet on which it is
no longer stable. A nonadiabatic transition (NAT) occurs after
some delay time [27,30] and the state jumps back to the green
stable sheet. The state then evolves on the green sheet for the
rest of the loop and the final state is a symmetric mode lying
on the green Riemann sheet. The final state is the same as the
input state [also see Fig. 3(a) for field profiles] because of the
one NAT. This NAT can also be characterized by the crossing
between the two amplitude coefficients in Fig. 4(a). We add
a discussion on the aforementioned delay time. In the process
of EP encircling, a NAT does not occur immediately when
the state begins to evolve on an unstable sheet. It will take a
certain time (i.e., the delay time) for the NAT to appear. This
delay time can be estimated from numerical simulations. For
example, the time span between the branch cut and the NAT
in Fig. 4(a) is the delay time. The NAT and the corresponding
delay time are related to the losses experienced by the state
when it evolves on the unstable sheet (e.g., higher losses can
induce a shorter delay time).

Figure 5(b) shows the trajectory with an antisymmetric
mode being the input which lies on the pink sheet. In this case,
the state is not stable from the beginning so that a first NAT
comes after a certain delay time and the state jumps to the
stable green sheet. The following process is almost the same
as the case with a symmetric input, i.e., the state climbs back
to the pink sheet again via the branch cut and a second NAT
occurs, leading the final state to be a symmetric mode. We find
the phenomenon of state flipping (i.e., an antisymmetric input
but a symmetric output) from the field profiles [see Fig. 3(b)]
because of two NATs in the encircling process. The results of
counterclockwise loops indicate that the final state is in fact
independent of the injected mode.

We then study clockwise loops. The trajectories on the
Riemann sheets with the symmetric mode and antisymmetric
mode being the initial state are plotted in Figs. 5(c) and 5(d),
respectively. We find that the dynamical behaviors are similar
to those in counterclockwise loops. Specifically, the process
with a symmetric initial state has one NAT [compare Figs. 5(c)
with 5(a)] while that with an antisymmetric input possesses
two NATs [compare Figs. 5(d) with 5(b)]. The final state is
still a symmetric mode lying on the green sheet [also see
Figs. 3(c) and 3(d) for field profiles]. This is a demonstration
of nonchiral dynamics in the sense that the final state for
loop 1 in our system is always a symmetric mode, which is
regardless of the encircling directions.

We discuss the reason why our loop 1 exhibits nonchiral
dynamics but loops in previous works show chiral dynamics,
although the starting points of all these loops lie close to the
branch cut. Our loop 1 is different from other regular loops
in the sense that it has a tail, which is in fact the key to the
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FIG. 6. (a), (b) Numerically simulated x-component electric field distributions along the z axis for clockwise loop 2 with (a) symmetric
mode and (b) antisymmetric mode being the input eigenmode. (c), (d) Items shown are the same as those in (a), (b) except for counterclockwise
loop 2. The output state is an antisymmetric mode for all four cases.

nonchiral dynamics. When a state is dynamically evolving
in a non-Hermitian system, it is not stable when not being
on the lowest loss Riemann sheet and NATs would appear
after a certain delay time. If the system is sufficiently long
(i.e., each possible NAT has enough time to occur), the state
should be on the lowest loss sheet when it approaches the
end point of the loop. Based on this principle, previous works
revealed that for a starting and end point close to the branch
cut (or PT -symmetric phase), approaching the end point from
different sides of the branch cut will result in different final
states because of the topology structure of the energy surface
around the EP [10,11,30]. This is the reason why regular loops
(e.g., elliptical loops) exhibit chiral dynamics. Applying this
principle to our loop 1, we note from Fig. 2(a) that the state for
both counterclockwise loop and clockwise loop will approach
the end point from the right-hand side of the branch cut, due
to the existence of the tail. This same way to approach the
end point for counterclockwise and clockwise loops results in
the same output state and furthermore the nonchiral dynamics.
Our findings indicate that besides the starting and end point of
the loop [30], the shape of the loop can also determine the
dynamics of the encircling process.

IV. DIFFERENT OUTCOMES FOR HOMOTOPIC LOOPS

We have demonstrated the nonchiral dynamics for loop 1
in the previous section. In this section, we study loop 2 and
compare the dynamics of the two loops.

Figures 6(a)–6(d) show the calculated x-component elec-
tric field distributions in the system that follows loop 2 in the
parameter space for different encircling directions and input
states. We find that no matter which eigenmode is injected and
in which direction the encircling takes, the final state is always
an antisymmetric mode. The corresponding trajectories on
the imaginary part of the Riemann sheets for the four cases
are plotted in Figs. 7(a)–7(d). For the processes featuring a
state flip [i.e., Figs. 7(a) and 7(c)], there are two NATs in the
encircling process. In contrast, there is only one NAT for the
processes in which the state returns to itself after the loop [i.e.,
Figs. 7(b) and 7(d)]. For all the four cases, the final state is on
the pink sheet.

Although loop 2 also exhibits nonchiral dynamics, its final
state (i.e., antisymmetric mode) is different from that of loop 1
(i.e., symmetric mode), as summarized in Table I. This is due

to the different locations of the “tails” of the two loops. It can
be noted from Figs. 2(a) and 2(b) that the “tail” of loop 1 lies
on the right-hand side of the branch cut, while that of loop
2 is located mainly on the left-hand side of the branch cut.
As discussed in Sec. III, moving towards the end point from
different sides of the branch cut leads to different final states.
Therefore, the outcomes of loop 1 and loop 2 are different.

In fact, loop 1 and loop 2 are homotopic loops; i.e., they
share the same starting point and one loop can be transformed
continuously into another one without crossing any singularity
(i.e., the EP) in the parameter space. Homotopic loops have
been studied recently in the case of stroboscopic encircling
of the EP in which the process is always adiabatic [22,23]. It
was proved that for homotopic loops, once the starting state
and the encircling direction are the same, the final state must
be the same [22]. Our results in this work show that the above
conclusion is not applicable to the case of dynamical encir-
cling in which the adiabaticity may break down. Specifically,
loop 1 and loop 2 are homotopic loops, but even if the starting
state and the encircling direction are the same, the outcomes
are completely different.
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FIG. 7. (a), (b) Trajectories of the state evolution on the imagi-
nary part of the Riemann sheets for clockwise loop 2 with (a) sym-
metric mode and (b) antisymmetric mode being the input eigenmode.
(c), (d) Items shown are the same as those in (a), (b) except for
counterclockwise loop 2.
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TABLE I. Comparison of the dynamical process of the four loops. Each loop exhibits nonchiral dynamics. Loop 1 and loop 2 are homotopic
loops but their outcomes are different. The same behaviors can also be found for loop A and loop B.

Loop Dynamics End state of counterclockwise loops End state of clockwise loops

Loop 1 Nonchiral Symmetric mode Symmetric mode
Loop 2 Nonchiral Antisymmetric mode Antisymmetric mode
Loop A Nonchiral |ψ2〉 |ψ2〉
Loop B Nonchiral |ψ1〉 |ψ1〉

V. THEORETICAL DEMONSTRATION
OF THE DYNAMICS

We propose an analytical theory to explain the phe-
nomenon associated with homotopic loops. We study a two-
state system which is governed by

i∂t |ψ (t )〉 = H (t )|ψ (t )〉, (3)

where |ψ (t )〉 = [a(t ), b(t )]T is defined to be the time-
dependent state vector, and H(t) is the time-dependent Hamil-
tonian with the form

H (t ) =
[

ig(t ) + δ(t ) −1

−1 −ig(t ) − δ(t )

]
. (4)

The system is PT symmetric when δ = 0. We consider a
g − δ parameter space in which a pair of EPs reside at g = ±1
and δ = 0. In the following study, we focus on the EP at g = 1
and δ = 0. The parameter space with this EP is shown in
Figs. 8(a) and 8(b), where we generate two homotopic loops,
i.e., loop A and loop B. The EP is marked by the star, and
the PT -symmetric phase and PT -broken phase are marked
by the red dashed line and red dotted line, respectively. The
starting and end points of the two loops lies exactly in the
PT -symmetric phase so that the dynamical behavior of them
should be the same as that of loop 1 and loop 2 studied in
Secs. III and IV. Therefore, loop A and loop B are good candi-
dates to study why homotopic loops show distinct dynamical
behaviors.

Figure 8(a) shows a common point for clockwise and
counterclockwise loop A that when approaching the end point,
the state will travel from the PT -broken phase to the PT -
symmetric phase in a clockwise direction for both loops (see
the blue dashed curve for counterclockwise loop A and the
blue dash-dotted curve for clockwise loop A). For loop B,

on the contrary, we find in Fig. 8(b) that the state will travel
counterclockwise for both counterclockwise loop B (see the
green dash-dotted curve) and clockwise loop B (see the green
dashed curve) when approaching the end point of the loop.
Such difference is in fact the key reason for the different
dynamics of loop A and loop B. We will prove that when a
state starts from the PT -broken phase and ends at the PT -
symmetric phase, the final states are different for clockwise
trajectory and counterclockwise trajectory, and the results are
independent of the input state.

To prove this point, we consider two trajectories, namely,
trajectory A and trajectory B in Fig. 8(c), with the starting
point and end point lying in the PT -broken phase and PT -
symmetric phase, respectively. The trajectories follow the
expression g(t ) = 1 − ρ cos(γ t ) and δ(t ) = ρ sin(γ t ), where
ρ is the radius and γ measures the adiabaticity of the process.
We have t = t0 = −π/|γ | and t = tend = 0, respectively, at
the starting point and the end point. Trajectory A is gen-
erated by a negative γ while a positive γ leads to trajec-
tory B. At the starting point, the two eigenvalues are λG =
i
√

ρ2 + 2ρ and λL = −i
√

ρ2 + 2ρ, respectively, correspond-
ing to a gain state and a loss state. Their corresponding eigen-
vectors are |ψG〉 = [1, i(ρ + 1 −

√
ρ2 + 2ρ)]T and |ψL〉 =

[1, i(ρ + 1 +
√

ρ2 + 2ρ)]T . At the end point, on the contrary,
the two eigenstates lie in the PT -symmetric phase with eigen-
values λ1 = cos θ and λ2 = − cos θ , and eigenvectors |ψ1〉 =
[1, eiθ ]T and |ψ2〉 = [1,−e−iθ ]T , where θ = arcsin(1 − ρ ).

We first solve Eq. (3) numerically along trajectory A (γ =
−0.01) and trajectory B (γ = 0.01). We calculate the ratio
of the two elements of the state vector at the end point
[i.e., b(tend )/a(tend )] as a function of ρ, which can be used
to recognize the symmetry of the final state (i.e., |ψ1〉 or
|ψ2〉). The results for trajectory A are shown by solid lines
in Figs. 9(a) and 9(b), where the initial state is a gain state

(c)(a) (b)

FIG. 8. (a), (b) g − δ parameter space in which an EP resides at g = 1 and δ = 0. (a) Loop A and (b) loop B that encircles the EP with the
starting and end point (see the circle) in the PT -symmetric phase. (c) Trajectories A and B with the starting point and end point lying in the
PT -broken phase and PT -symmetric phase, respectively.
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(c)

(a) (b)

(d)

FIG. 9. (a), (b) Calculated b(tend )/a(tend ) (solid lines) as a func-
tion of ρ for trajectory A with (a) a gain state and (b) a loss state being
the initial state. The symbols show the values of − exp(−iθ ). (c), (d)
Items shown are the same as those in (a), (b) except for trajectory B
(solid lines) and exp(iθ ) (symbols).

|ψG〉 and a loss state |ψL〉, respectively. We find that along
trajectory A, the initial state makes no difference to the final
state, since Figs. 9(a) and 9(b) look the same. We also plot
the values of − exp(−iθ ) as a function of ρ [see the symbols
in Figs. 9(a) and 9(b)], which match well with the values
of b(tend )/a(tend ), indicating that the final state is |ψ2〉 =
[1,−e−iθ ]T . In the same way, Figs. 9(c) and 9(d) plot the
results for trajectory B (solid lines) and the values of exp(iθ )
(symbols), demonstrating that the final state along trajectory
B is always |ψ1〉 = [1, eiθ ]T , regardless of the initial state.

We now theoretically derive the final states of trajectories
A and B. Equations (3) and (4) can be recast into second-order
differential equations for a(t) and b(t), e.g., d2a(t )/dt2 −
[ρ2e2iγ t − ρ(2 + iγ )eiγ t ]a(t ) = 0. Exact solutions of the

dynamical processes were first obtained by Berry and Uzdin
[25]. Following their idea [25] as well as the method used
in Refs. [28,30], the above equation can be reduced into
a degenerate hypergeometric differential equation, and the
solutions are confluent hypergeometric functions of the first
kind F and second kind U. We first consider trajectory B with
γ > 0, where the starting point lies in the PT -broken phase. It
was derived in Ref. [30] that the state vector at the final time
step tend = 0 can be related to the initial state at t0 = −π/γ

via a transfer matrix,

[a(tend ), b(tend )]T = σ (tend )M1(tend )M2M3[a(t0), b(t0)]T ,

(5)

where the matrix elements are

M1(tend )=
[

F (0)
t=0 U (0)

t=0

iF (0)
t=0 + 2ρeiγ t F (1)

t=0/γ iU (0)
t=0 − 2ρeiγ tU (1)

t=0/γ

]
,

(6a)

M2 =
[

ρU (0)
t=−π/γ /γ + 2iρU (1)

t=−π/γ /γ 2 −U (0)
t=−π/γ

−ρF (0)
t=−π/γ /γ + 2iρF (1)

t=−π/γ /γ 2 F (0)
t=−π/γ

]
,

(6b)

M3 =
[

1 0

(1 + ρ)/γ i/γ

]
, (6c)

with F (n) and U (n) being confluent hypergeometric
functions [36] F (n + i/γ , n + 1,−2iρeiγ t/γ ) and
U (n + i/γ , n + 1,−2iρeiγ t/γ ), respectively, and σ (tend ) =
i�(i/γ ) where Г is the gamma function. We further define
M = M1(tend )M2M3 = [m11 m12

m21 m22
], and the final state satisfies

b(tend )/a(tend ) = m21a(t0) + m22b(t0)

m11a(t0) + m12b(t0)
. (7)

The key to solving Eq. (7) is to derive the elements of
matrix M, which are

m11 = 1

γ

(
U (0)

t=0F (0)
t=−π/γ − F (0)

t=0U
(0)

t=−π/γ

) + 2iρ

γ 2

(
F (0)

t=0U
(1)

t=−π/γ + U (0)
t=0F (1)

t=−π/γ

)
, (8a)

m12 = i

γ

(
U (0)

t=0F (0)
t=−π/γ − F (0)

t=0U
(0)

t=−π/γ

)
, (8b)

m21 = −2ρ

γ 2

(
F (0)

t=0U
(1)

t=−π/γ + U (0)
t=0F (1)

t=−π/γ

) + 4iρ2

γ 3

(
F (1)

t=0U
(1)

t=−π/γ − U (1)
t=0F (1)

t=−π/γ

)
− i

γ

(
F (0)

t=0U
(0)

t=−π/γ − U (0)
t=0F (0)

t=−π/γ

) − 2ρ

γ 2

(
F (1)

t=0U
(0)

t=−π/γ + U (1)
t=0F (0)

t=−π/γ

)
, (8c)

m22 = 1

γ

(
F (0)

t=0U
(0)

t=−π/γ − U (0)
t=0F (0)

t=−π/γ

) − 2iρ

γ 2

(
F (1)

t=0U
(0)

t=−π/γ + U (1)
t=0F (0)

t=−π/γ

)
. (8d)

In the limit of γ → 0, the values of F (0)
t=−π/γ , F (1)

t=−π/γ , U (0)
t=0, and U (1)

t=0 are considerably smaller than F (0)
t=0, F (1)

t=0, U (0)
t=−π/γ , and

U (1)
t=−π/γ . Using these approximations, it can then be derived that

m22

m12
=m21

m11
=i + 2ρ

γ

F (1)
t=0

F (0)
t=0

. (9)
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It was proved in Ref. [28] using the asymptotic ex-
pressions of the hypergeometric functions that F (1)

t=0/F (0)
t=0 =

γ (eiθ − i)/(2ρ). Inserting this expression into Eqs. (7) and
(9), we obtain

b(tend )/a(tend ) = eiθ , (10)

which indicates that the final state of trajectory B is always
|ψ1〉 = [1, eiθ ]T and independent of the initial state |ψ (t0)〉.

The dynamics of trajectory A can be studied based on the
principle that the final state (a, b) would become (a∗,−b∗)
when the sign of γ is flipped [28]. We then find that the final
state of trajectory A is |ψ2〉 = [1,−e−iθ ]T .

The mode switching behaviors of trajectory A and trajec-
tory B can be employed to explain the different outcomes of
loop A and loop B. We note from Fig. 8 that trajectory A(B)
is the final part of loop A(B) for both clockwise and counter-
clockwise cases. Consider a state that travels along loop A(B).
No matter which eigenstate is injected at the starting point
and in which direction the encircling takes, the instantaneous
state must be a combination of |ψG〉 and |ψL〉 when it reaches
the starting point of trajectory A(B) [see points A′ and A′′ in
Fig. 8(a), and points B′ and B′′ in Fig. 8(b)]. We have proved
that the final state of trajectory A(B) does not depend on the
initial state. Therefore, the outcome of loop A(B) is the same
as that of trajectory A(B); i.e., the final state of loop A is |ψ2〉
while that of loop B is |ψ1〉, which is independent of the initial
state as well as the encircling direction. The mode switching
behaviors of loop A and loop B are summarized in Table I. The
different outcomes for these two homotopic loops are due to
the fact that when a state travels from the PT -broken phase to
the PT -symmetric phase, different encircling directions result
in different final states.

VI. CONCLUSION

In summary, we have found unexpected phenomena and
revealed some unique physics in the process of dynamically
encircling EPs in non-Hermitian systems. We showed that
the mode switching behaviors do not depend on homotopy,
i.e., the outcomes can be different even if two homotopic

loops share the same starting state and the EP enclosed is
encircled in the same direction (e.g., loop 1 and loop 2). A
complementary phenomenon to this is that the mode switch-
ing behaviors can be the same for nonhomotopic loops. For
example, it was found in Ref. [31] that the chiral dynamics
can also occur even if the loop excludes any EP, where the
loop is obviously not homotopic to the loop enclosing an EP.
These examples indicate that the consequence in the process
of dynamically encircling EPs is very different from that of
stroboscopic encircling, where homotopy plays a key role in
determining the mode switching behaviors. We further studied
the key factors to determine the mode switching behavior
in the case of dynamic encircling. We note from previous
studies that the location of the starting point can determine
the dynamics, i.e., a starting point lying somewhere where
two eigenmodes share almost the same loss (e.g., the branch
cut or PT -symmetric phase) can result in a chiral mode
switching behavior [10,11,24,28,31], whereas the dynamics
is nonchiral if there is only one eigenmode exhibiting the
lowest loss at the starting point (e.g., the PT -broken phase)
[30]. We gave a counterexample to this conclusion using loop
1 and loop 2 that have a tail. We showed that the dynamics
can be nonchiral even if the starting point lies close to the
branch cut. This adds to our understanding of the case of
dynamical encircling; i.e., besides the starting point of the
loop, the trajectory along which the state approaches the end
point can also determine the mode switching behavior. These
phenomena and physics may find applications for the design
of alternative wave manipulation strategies in non-Hermitian
systems.
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