Based on ultrafast lasers, our research is focused on two aspects: (i) nonlinear light-matter interaction control for fabrication of micro-nanostructures and devices, and (ii) transient spectroscopy for photo-electronic and electro-photonic conversion dynamics exploration. First principle and electromagnetic calculations are indispensable for deep insight into material and device physics.
立足于超快激光,我们的研究聚焦于两个方面:(i)微纳结构与器件加工中的光与物质非线性相互作用操控研究,以及(ii)光电子学和光电转换动力学的瞬态光谱技术研究。第一性原理和电磁计算方法是深入了解材料与器件物理不可或缺的。
In ultrafast spectroscopy studies, we are concerning about (a) light harvesting and carriers transportation dynamics of solar cells; (b) light emission dynamics of, for example, organic light-emitting devices (OLEDs); and (c) combustion and atmosphere diagnosis by fs laser filamentation.
在超快光谱研究领域,我们关注: (a)太阳能电池的光采集和载流子传输动力学;(b)有机发光器件(OLEDs)等的发光动力学;以及(c)通过飞秒激光光丝进行的燃烧和大气诊断。在激光微纳加工研究领域,我们利用飞秒激光作为一种使能工具,来制造一些囿于材料本身难加工属性或空间结构复杂性而本不可能实现的器件。在(a)微光学、(b)微电子学、(c)微机械学、(d)微流体学、(e)有机光电子学、(f)恶劣环境传感以及(g)生物和(h)仿生制造的微器件上已经取得了突破性进展。
In laser micronanofabrication research, we are utilizing femtosecond laser as an enabling tool to fabricate devices that are otherwise not possible, either because of hard-processing materials or due to the complexity of spatial structures. Breakthroughs have been made on microdevices for (a) micro-optics, (b) microelectronics, (c) micromechanics, (d) microfluidics, (e) organic optoelectronics, and (f) harsh environmental sensing, as well as (g) biological and (h) biomimetic fabrications.
在激光微纳加工研究中,飞秒激光可以用于其他方法所不能的材料、器件加工,例如硬质材料或空间结构复杂性的材料。 目前在微器件制造方面已取得诸多突破,例如(a)微光学,(b)微电子,(c)微机械,(d)微流体,(e)有机光电子和(f)恶劣的环境传感以及(g)生物领域和(h)仿生制品。
The vision of the lab is continuously providing technical solutions and innovative device prototypes for optoelectronic industries including display, sensing and optical communication.
实验室的愿景是不断为显示、传感、光通信等光电行业提供技术解决方案和创新器件原型。